1,646 research outputs found
Recommended from our members
Polarization control at the microscopic and electronic structure observatory
The new Microscopic and Electronic Structure Observatory (MAESTRO) at the Advanced Light Source (ALS) in Berkeley provides X-rays of variable polarization, produced by an elliptically polarized undulator (EPU), for angle resolved photoemission (ARPES) and photoemission electron microscopy (PEEM) experiments. The interpretation of photoemission data, in particular of dichroism effects in ARPES, requires the precise knowledge of the exact polarization state. Numerical simulations show that the first harmonics of the EPU at MAESTRO provides soft X-rays of almost 100% on axis polarization. However, the higher harmonics as well as the downstream optical elements of the beamline, have a considerable impact on the polarization of the light delivered to the experimental end-station. Employing a simple reflective polarimeter, the polarization is characterized for variable EPU and beamline settings and the overall degree of polarization in the MAESTRO end-stations is estimated to be on the order of 83%
Tunable Polaronic Conduction in Anatase TiO2
Oxygen vacancies created in anatase TiO2 by UV photons (80–130 eV) provide an effective electron-doping mechanism and induce a hitherto unobserved dispersive metallic state. Angle resolved photoemission reveals that the quasiparticles are large polarons. These results indicate that anatase can be tuned from an insulator to a polaron gas to a weakly correlated metal as a function of doping and clarify the nature of conductivity in this material.open1192sciescopu
Topological surface states above the Fermi energy in
We report a detailed experimental study of the band structure of the recently
discovered topological material . Using
the combination of scanning tunneling spectroscopy and angle-resolved
photo-emission spectroscopy with surface K-doping, we probe the band structure
of with energy and momentum resolution
above the Fermi level. Our experiments show the presence of multiple surface
states with a linear Dirac-like dispersion, consistent with the predictions
from previously reported band structure calculations. In particular, scanning
tunneling spectroscopy measurements provide the first experimental evidence for
the strong topological surface state predicted at 460 meV, which stems from the
band inversion between Hf-d and Te-p orbitals. This band inversion comprised of
more localized d-states could result in a better surface-to-bulk conductance
ratio relative to more traditional topological insulators.Comment: Supplementary materials available upon reques
Analysis of Acquisition and Titer of Maize Mosaic Rhabdovirus in Its Vector, Peregrinus maidis (Hemiptera: Delphacidae)
Citation: Barandoc-Alviar, K., Ramirez, G. M., Rotenberg, D., & Whitfield, A. E. (2016). Analysis of Acquisition and Titer of Maize Mosaic Rhabdovirus in Its Vector, Peregrinus maidis (Hemiptera: Delphacidae). Journal of Insect Science, 16(1), 1-8.
https://doi.org/10.1093/jisesa/iev154The corn planthopper, Peregrinus maidis (Ashmead) (Hemiptera: Delphacidae), transmits Maize mosaic rhabdovirus (MMV), an important pathogen of maize and sorghum, in a persistent propagative manner. To better understand the vectorial capacity of P. maidis, we determined the efficiency of MMV acquisition by nymphal and adult stages, and characterized MMV titer through development. Acquisition efficiency, i.e., proportion of insects that acquired the virus, was determined by reverse transcriptase polymerase chain reaction (RT-PCR) and virus titer of individual insects was estimated by quantitative RT-PCR. Acquisition efficiency of MMV differed significantly between nymphs and adults. MMV titer increased significantly over time and throughout insect development from nymphal to adult stage, indication of virus replication in the vector during development. There was a positive association between the vector developmental stage and virus titer. Also, the average titer in male insects was threefold higher than female titers, and this difference persisted up to 30 d post adult eclosion. Overall, our findings indicate that nymphs are more efficient than adults at acquiring MMV and virus accumulated in the vector over the course of nymphal development. Furthermore, sustained infection over the lifespan of P. maidis indicates a potentially high capacity of this vector to transmit MMV
Evidence for Weyl fermions in a canonical heavy-fermion semimetal YbPtBi
The manifestation of Weyl fermions in strongly correlated electron systems is
of particular interest. We report evidence for Weyl fermions in the heavy
fermion semimetal YbPtBi from electronic structure calculations, angle-resolved
photoemission spectroscopy, magnetotransport and calorimetric measurements. At
elevated temperatures where -electrons are localized, there are triply
degenerate points, yielding Weyl nodes in applied magnetic fields. These are
revealed by a contribution from the chiral anomaly in the magnetotransport,
which at low temperatures becomes negligible due to the influence of electronic
correlations. Instead, Weyl fermions are inferred from the topological Hall
effect, which provides evidence for a Berry curvature, and a cubic temperature
dependence of the specific heat, as expected from the linear dispersion near
the Weyl nodes. The results suggest that YbPtBi is a Weyl heavy fermion
semimetal, where the Kondo interaction renormalizes the bands hosting Weyl
points. These findings open up an opportunity to explore the interplay between
topology and strong electronic correlations.Comment: 19 pages, 5 figures, Supplementary Information available with open
access at https://www.nature.com/articles/s41467-018-06782-
Visualizing Atomic-Scale Negative Differential Resistance in Bilayer Graphene
We investigate the atomic-scale tunneling characteristics of bilayer graphene on silicon carbide using the scanning tunneling microscopy. The high-resolution tunneling spectroscopy reveals an unexpected negative differential resistance (NDR) at the Dirac energy, which spatially varies within the single unit cell of bilayer graphene. The origin of NDR is explained by two near-gap van Hove singularities emerging in the electronic spectrum of bilayer graphene under a transverse electric field, which are strongly localized on two sublattices in different layers. Furthermore, defects near the tunneling contact are found to strongly impact on NDR through the electron interference. Our result provides an atomic-level understanding of quantum tunneling in bilayer graphene, and constitutes a useful step towards graphene-based tunneling devices. DOI: 10.1103/PhysRevLett.110.036804X11109sciescopu
Cluster sum rules for three-body systems with angular-momentum dependent interactions
We derive general expressions for non-energy weighted and energy-weighted
cluster sum rules for systems of three charged particles. The interferences
between pairs of particles are found to play a substantial role. The
energy-weighted sum rule is usually determined by the kinetic energy operator,
but we demonstrate that it has similar additional contributions from the
angular momentum and parity dependence of two- and three-body potentials
frequently used in three-body calculations. The importance of the different
contributions is illustrated with the dipole excitations in He. The results
are compared with the available experimental data.Comment: 11 pages, 3 figures, 2 table
Strictly One-Dimensional Electron System in Au Chains on Ge(001) Revealed By Photoelectron K-Space Mapping
Atomic nanowires formed by Au on Ge(001) are scrutinized for the band
topology of the conduction electron system by k-resolved photoemission. Two
metallic electron pockets are observed. Their Fermi surface sheets form
straight lines without undulations perpendicular to the chains within
experimental uncertainty. The electrons hence emerge as strictly confined to
one dimension. Moreover, the system is stable against a Peierls distortion down
to 10 K, lending itself for studies of the spectral function. Indications for
unusually low spectral weight at the chemical potential are discussed.Comment: 4 pages, 4 figures - revised version with added Fig. 2e) and
additional reference
- …
