1,646 research outputs found

    Tunable Polaronic Conduction in Anatase TiO2

    Get PDF
    Oxygen vacancies created in anatase TiO2 by UV photons (80–130 eV) provide an effective electron-doping mechanism and induce a hitherto unobserved dispersive metallic state. Angle resolved photoemission reveals that the quasiparticles are large polarons. These results indicate that anatase can be tuned from an insulator to a polaron gas to a weakly correlated metal as a function of doping and clarify the nature of conductivity in this material.open1192sciescopu

    Topological surface states above the Fermi energy in Hf2Te2P\textrm{Hf}_{2}\textrm{Te}_2\textrm{P}

    Get PDF
    We report a detailed experimental study of the band structure of the recently discovered topological material Hf2Te2P\textrm{Hf}_{2}\textrm{Te}_2\textrm{P}. Using the combination of scanning tunneling spectroscopy and angle-resolved photo-emission spectroscopy with surface K-doping, we probe the band structure of Hf2Te2P\textrm{Hf}_{2}\textrm{Te}_2\textrm{P} with energy and momentum resolution above the Fermi level. Our experiments show the presence of multiple surface states with a linear Dirac-like dispersion, consistent with the predictions from previously reported band structure calculations. In particular, scanning tunneling spectroscopy measurements provide the first experimental evidence for the strong topological surface state predicted at 460 meV, which stems from the band inversion between Hf-d and Te-p orbitals. This band inversion comprised of more localized d-states could result in a better surface-to-bulk conductance ratio relative to more traditional topological insulators.Comment: Supplementary materials available upon reques

    Analysis of Acquisition and Titer of Maize Mosaic Rhabdovirus in Its Vector, Peregrinus maidis (Hemiptera: Delphacidae)

    Get PDF
    Citation: Barandoc-Alviar, K., Ramirez, G. M., Rotenberg, D., & Whitfield, A. E. (2016). Analysis of Acquisition and Titer of Maize Mosaic Rhabdovirus in Its Vector, Peregrinus maidis (Hemiptera: Delphacidae). Journal of Insect Science, 16(1), 1-8. https://doi.org/10.1093/jisesa/iev154The corn planthopper, Peregrinus maidis (Ashmead) (Hemiptera: Delphacidae), transmits Maize mosaic rhabdovirus (MMV), an important pathogen of maize and sorghum, in a persistent propagative manner. To better understand the vectorial capacity of P. maidis, we determined the efficiency of MMV acquisition by nymphal and adult stages, and characterized MMV titer through development. Acquisition efficiency, i.e., proportion of insects that acquired the virus, was determined by reverse transcriptase polymerase chain reaction (RT-PCR) and virus titer of individual insects was estimated by quantitative RT-PCR. Acquisition efficiency of MMV differed significantly between nymphs and adults. MMV titer increased significantly over time and throughout insect development from nymphal to adult stage, indication of virus replication in the vector during development. There was a positive association between the vector developmental stage and virus titer. Also, the average titer in male insects was threefold higher than female titers, and this difference persisted up to 30 d post adult eclosion. Overall, our findings indicate that nymphs are more efficient than adults at acquiring MMV and virus accumulated in the vector over the course of nymphal development. Furthermore, sustained infection over the lifespan of P. maidis indicates a potentially high capacity of this vector to transmit MMV

    Evidence for Weyl fermions in a canonical heavy-fermion semimetal YbPtBi

    Full text link
    The manifestation of Weyl fermions in strongly correlated electron systems is of particular interest. We report evidence for Weyl fermions in the heavy fermion semimetal YbPtBi from electronic structure calculations, angle-resolved photoemission spectroscopy, magnetotransport and calorimetric measurements. At elevated temperatures where 4f4f-electrons are localized, there are triply degenerate points, yielding Weyl nodes in applied magnetic fields. These are revealed by a contribution from the chiral anomaly in the magnetotransport, which at low temperatures becomes negligible due to the influence of electronic correlations. Instead, Weyl fermions are inferred from the topological Hall effect, which provides evidence for a Berry curvature, and a cubic temperature dependence of the specific heat, as expected from the linear dispersion near the Weyl nodes. The results suggest that YbPtBi is a Weyl heavy fermion semimetal, where the Kondo interaction renormalizes the bands hosting Weyl points. These findings open up an opportunity to explore the interplay between topology and strong electronic correlations.Comment: 19 pages, 5 figures, Supplementary Information available with open access at https://www.nature.com/articles/s41467-018-06782-

    Visualizing Atomic-Scale Negative Differential Resistance in Bilayer Graphene

    Get PDF
    We investigate the atomic-scale tunneling characteristics of bilayer graphene on silicon carbide using the scanning tunneling microscopy. The high-resolution tunneling spectroscopy reveals an unexpected negative differential resistance (NDR) at the Dirac energy, which spatially varies within the single unit cell of bilayer graphene. The origin of NDR is explained by two near-gap van Hove singularities emerging in the electronic spectrum of bilayer graphene under a transverse electric field, which are strongly localized on two sublattices in different layers. Furthermore, defects near the tunneling contact are found to strongly impact on NDR through the electron interference. Our result provides an atomic-level understanding of quantum tunneling in bilayer graphene, and constitutes a useful step towards graphene-based tunneling devices. DOI: 10.1103/PhysRevLett.110.036804X11109sciescopu

    Cluster sum rules for three-body systems with angular-momentum dependent interactions

    Full text link
    We derive general expressions for non-energy weighted and energy-weighted cluster sum rules for systems of three charged particles. The interferences between pairs of particles are found to play a substantial role. The energy-weighted sum rule is usually determined by the kinetic energy operator, but we demonstrate that it has similar additional contributions from the angular momentum and parity dependence of two- and three-body potentials frequently used in three-body calculations. The importance of the different contributions is illustrated with the dipole excitations in 6^6He. The results are compared with the available experimental data.Comment: 11 pages, 3 figures, 2 table

    Strictly One-Dimensional Electron System in Au Chains on Ge(001) Revealed By Photoelectron K-Space Mapping

    Full text link
    Atomic nanowires formed by Au on Ge(001) are scrutinized for the band topology of the conduction electron system by k-resolved photoemission. Two metallic electron pockets are observed. Their Fermi surface sheets form straight lines without undulations perpendicular to the chains within experimental uncertainty. The electrons hence emerge as strictly confined to one dimension. Moreover, the system is stable against a Peierls distortion down to 10 K, lending itself for studies of the spectral function. Indications for unusually low spectral weight at the chemical potential are discussed.Comment: 4 pages, 4 figures - revised version with added Fig. 2e) and additional reference
    corecore