43 research outputs found

    A Natural System of Chromosome Transfer in Yersinia pseudotuberculosis

    Get PDF
    The High Pathogenicity Island of Yersinia pseudotuberculosis IP32637 was previously shown to be horizontally transferable as part of a large chromosomal segment. We demonstrate here that at low temperature other chromosomal loci, as well as a non-mobilizable plasmid (pUC4K), are also transferable. This transfer, designated GDT4 (Generalized DNA Transfer at 4°C), required the presence of an IP32637 endogenous plasmid (pGDT4) that carries several mobile genetic elements and a conjugation machinery. We established that cure of this plasmid or inactivation of its sex pilus fully abrogates this process. Analysis of the mobilized pUC4K recovered from transconjugants revealed the insertion of one of the pGDT4–borne ISs, designated ISYps1, at different sites on the transferred plasmid molecules. This IS belongs to the IS6 family, which moves by replicative transposition, and thus could drive the formation of cointegrates between pGDT4 and the host chromosome and could mediate the transfer of chromosomal regions in an Hfr-like manner. In support of this model, we show that a suicide plasmid carrying ISYps1 is able to integrate itself, flanked by ISYps1 copies, at multiple locations into the Escherichia coli chromosome. Furthermore, we demonstrate the formation of RecA-independent cointegrates between the ISYps1-harboring plasmid and an ISYps1-free replicon, leading to the passive transfer of the non-conjugative plasmid. We thus demonstrate here a natural mechanism of horizontal gene exchange, which is less constrained and more powerful than the classical Hfr mechanism, as it only requires the presence of an IS6-type element on a conjugative replicon to drive the horizontal transfer of any large block of plasmid or chromosomal DNA. This natural mechanism of chromosome transfer, which occurs under conditions mimicking those found in the environment, may thus play a significant role in bacterial evolution, pathogenesis, and adaptation to new ecological niches

    Growth of Yersinia pseudotuberculosis in human plasma: impacts on virulence and metabolic gene expression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In man, infection by the Gram-negative enteropathogen <it>Yersinia pseudotuberculosis </it>is usually limited to the terminal ileum. However, in immunocompromised patients, the microorganism may disseminate from the digestive tract and thus cause a systemic infection with septicemia.</p> <p>Results</p> <p>To gain insight into the metabolic pathways and virulence factors expressed by the bacterium at the blood stage of pseudotuberculosis, we compared the overall gene transcription patterns (the transcriptome) of bacterial cells cultured in either human plasma or Luria-Bertani medium. The most marked plasma-triggered metabolic consequence in <it>Y. pseudotuberculosis </it>was the switch to high glucose consumption, which is reminiscent of the acetogenic pathway (known as "glucose overflow") in <it>Escherichia coli</it>. However, upregulation of the glyoxylate shunt enzymes suggests that (in contrast to <it>E. coli</it>) acetate may be further metabolized in <it>Y. pseudotuberculosis</it>. Our data also indicate that the bloodstream environment can regulate major virulence genes (positively or negatively); the <it>yadA </it>adhesin gene and most of the transcriptional units of the pYV-encoded type III secretion apparatus were found to be upregulated, whereas transcription of the pH6 antigen locus was strongly repressed.</p> <p>Conclusion</p> <p>Our results suggest that plasma growth of <it>Y. pseudotuberculosis </it>is responsible for major transcriptional regulatory events and prompts key metabolic reorientations within the bacterium, which may in turn have an impact on virulence.</p

    Multiple antimicrobial resistance in plague: An emerging public health risk

    Get PDF
    Antimicrobial resistance in Yersinia pestis is rare, yet constitutes a significant international public health and biodefense threat. In 1995, the first multidrug resistant (MDR) isolate of Y. pestis (strain IP275) was identified, and was shown to contain a self-transmissible plasmid (pIP1202) that conferred resistance to many of the antimicrobials recommended for plague treatment and prophylaxis. Comparative analysis of the DNA sequence of Y. pestis plasmid pIP1202 revealed a near identical IncA/C plasmid backbone that is shared by MDR plasmids isolated from Salmonella enterica serotype Newport SL254 and the fish pathogen Yersinia ruckeri YR71. The high degree of sequence identity and gene synteny between the plasmid backbones suggests recent acquisition of these plasmids from a common ancestor. In addition, the Y. pestis pIP1202-like plasmid backbone was detected in numerous MDR enterobacterial pathogens isolated from retail meat samples collected between 2002 and 2005 in the United States. Plasmid-positive strains were isolated from beef, chicken, turkey and pork, and were found in samples from the following states: California, Colorado, Connecticut, Georgia, Maryland, Minnesota, New Mexico, New York and Oregon. Our studies reveal that this common plasmid backbone is broadly disseminated among MDR zoonotic pathogens associated with agriculture. This reservoir of mobile resistance determinants has the potential to disseminate to Y. pestis and other human and zoonotic bacterial pathogens and therefore represents a significant public health concern

    Biological variability and exposure assessment

    No full text
    Predictive models are now commonly used for exposure assessment, with growth parameters defined for each microbial species. In this study, we tried to take into account microbial growth variability among strains of a single species. Bacillus cereus in pasteurized milk was chosen to illustrate the influence of the biological variability on the outcome of exposure assessment. Each parameter of the exposure assessment (growth parameters, shelf-life conditions) was characterized by a probability distribution describing variability and/or uncertainty. The impact of the intra-species variability on the result of the exposure assessment was then quantified and discussed. Two simple domestic shelf life conditions were tested. The results confirm that the biological variability has a great impact on the accuracy of the result and should not be systematically neglected

    Genetic and genomic contexts of toxin genes

    No full text
    This chapter focuses primarily on the genomic distribution (plasmid vs chromosome) and the genetic environments of the different toxin genes found in entomopathogenic bacteria, mainly in Bacillus thuringiensis and Bacillus sphaericus. A special attention is brought to their association with mobile genetic elements (Insertion Sequences, Transposons and conjugative plasmids) and their possible clustering to other, more generic, virulence factors, in the scope of genome variability and plasticity through gene transfer and rearrangements

    Two critical brain networks for generation and combination of remote associations

    No full text
    International audienceRecent functional imaging findings in humans indicate that creativity relies on spontaneous and controlled processes, possibly supported by the default mode and the fronto-parietal control networks, respectively. Here, we examined the ability to generate 10 and combine remote semantic associations, in relation to creative abilities, in patients with focal frontal lesions. Voxel-based lesion-deficit mapping, disconnection-deficit mapping and network-based lesion-deficit approaches revealed critical prefrontal nodes and connections for distinct mechanisms related to creative cognition. Damage to the right medial prefrontal region, or its potential disrupting effect on the default mode network, affected the ability to generate remote ideas, likely by altering the organization of semantic associations. Damage to the left rostrolateral prefrontal region and its connections, or its potential disrupting effect on the 15 left fronto-parietal control network, spared the ability to generate remote ideas but impaired the ability to appropriately combine remote ideas. Hence, the current findings suggest that damage to specific nodes within the default mode and fronto-parietal control networks led to a critical loss of verbal creative abilities by altering distinct cognitive mechanisms

    Quantitative risk assessment of listeria monocytogenes in french cold-smoked salmon: I. quantitative exposure assessment

    No full text
    International audienceA quantitative assessment of the exposure to Listeria monocytogenes from cold-smoked salmon (CSS) consumption in France is developed. The general framework is a second-order (or two-dimensional) Monte Carlo simulation, which characterizes the uncertainty and variability of the exposure estimate. The model takes into account the competitive bacterial growth between L. monocytogenes and the background competitive flora from the end of the production line to the consumer phase. An original algorithm is proposed to integrate this growth in conditions of varying temperature. As part of a more general project led by the French Food Safety Agency (Afssa), specific data were acquired and modeled for this quantitative exposure assessment model, particularly time-temperature profiles, prevalence data, and contamination-level data. The sensitivity analysis points out the main influence of the mean temperature in household refrigerators and the prevalence of contaminated CSS on the exposure level. The outputs of this model can be used as inputs for further risk assessmen

    Transcriptome analysis of Yersinia pestis in human plasma: an approach for discovering bacterial genes involved in septicaemic plague

    No full text
    International audienceYersinia pestis is the aetiologic agent of plague. Without appropriate treatment, the pathogen rapidly causes septicaemia, the terminal and fatal phase of the disease. In order to identify bacterial genes which are essential during septicaemic plague in humans, we performed a transcriptome analysis on the fully virulent Y. pestis CO92 strain grown in either decomplemented human plasma or Luria-Bertani medium, incubated at either 28 or 37 degrees C and harvested at either the mid-exponential or the stationary growth phase. Y. pestis genes involved in 12 iron-acquisition systems and one iron-storage system (bfr, bfd) were specifically induced in human plasma. Of these, the ybt and tonB genes (encoding the yersiniabactin siderophore virulence factor and the siderophore transporter, respectively) were induced at 37 degrees C, i.e. under conditions mimicking the mammalian environment. Growth in human plasma also upregulated genes involved in the synthesis of five fimbrial-like structures (including the Psa virulence factor), and in purine/pyrimidine metabolism (the nrd genes). Genes known to play a role in the virulence of several bacterial pathogens (such as those encoding the Lpp lipoprotein and non-iron metal-uptake proteins) were induced in human plasma, during either the exponential or the stationary phase. Finally, 120 genes encoding proteins of unknown function were upregulated in human plasma. Eleven of these genes were specifically transcribed at 37 degrees C and may thus represent new virulence factors that are important during the septicaemic phase of human plague
    corecore