62 research outputs found

    Aldosterone increases T-type calcium channel expression and in vitro beating frequency in neonatal rat cardiomyocytes

    Get PDF
    Objective: Although aldosterone has been implicated in the pathogenesis of cardiac hypertrophy and heart failure, its cellular mechanism of action on cardiomyocyte function is not yet completely elucidated. This study was designed to investigate the effect of aldosterone on calcium channel expression and cardiomyocyte contraction frequency. Methods: Cultured neonatal rat ventricular cardiomyocytes were stimulated in vitro with 1 μmol/L aldosterone for 24 h. Calcium currents were then measured with the patch clamp technique, while calcium channel expression was assessed by real-time RT-PCR. Results: In the present study, we show that aldosterone increases Ca2+ currents by inducing channel expression. Indeed, aldosterone led to a substantial increase of L- and T-type Ca2+ current amplitudes, and we found a concomitant 55% increase of the mRNA coding for α1C and β2 subunits of cardiac L channels. Although T-type currents were relatively small under control conditions, they increased 4-fold and T channel α1H isoform expression rose in the same proportion after aldosterone treatment. Because T channels have been implicated in the modulation of membrane electrical activity, we investigated whether aldosterone affects the beating frequency of isolated cardiomyocytes. In fact, aldosterone dose-dependently increased the spontaneous beating frequency more than 4-fold. This effect of aldosterone was prevented by actinomycin D and spironolactone and reduced by RU486, suggesting a mixed mineralocorticoid/glucocorticoid receptor-dependent transcriptional mechanism. Moreover, inhibition of T currents with Ni2+ or mibefradil significantly reduced beating frequency towards control values, while conditions affecting L-type currents completely blocked contractions. Conclusion: Aldosterone modulates the expression of cardiac voltage-operated Ca2+ channels and accelerates beating in cultured neonatal rat ventricular myocytes. This chronotropic action of aldosterone appears to be linked to increased T channel activity and could contribute to the deleterious effect of an excess of this steroid in vivo on cardiac functio

    Anti-apolipoprotein A-1 IgG as an independent cardiovascular prognostic marker affecting basal heart rate in myocardial infarction

    Get PDF
    Aims To assess the prognostic value of anti-apolipoprotein A-1 (anti-apoA-1) IgG after myocardial infarction (MI) and its association with major cardiovascular events (MACEs) at 12 months and to determine their association with resting heart rate (RHR), a well-established prognostic feature after MI. Anti-apoA-1 IgG have been reported in MI without autoimmune disease, but their clinical significance remains undetermined. Methods and results A total of 221 consecutive patients with MI were prospectively included, and all completed a 12-month follow-up. Major cardiovascular events consisted in death, MI, stroke, or hospitalization either for an acute coronary syndrome or heart failure. Resting heart rate was obtained on Holter the day before discharge under the same medical treatment. Neonate rat ventricular cardiomyocytes (NRVC) were used in vitro to assess the direct anti-apoA-1 IgG effect on RHR. During follow-up, 13% of patients presented a MACE. Anti-apoA-1 IgG positivity was 9% and was associated with a higher RHR (P = 0.0005) and higher MACE rate (adjusted OR, 4.3; 95% CI, 1.46-12.6; P = 0.007). Survival models confirmed the significant nature of this association. Patients with MACE had higher median anti-apoA-1 IgG values at admission than patients without (P = 0.007). On NRVC, plasma from MI patients and monoclonal anti-apoA-1 IgG induced an aldosterone and dose-dependent positive chronotropic effect, abrogated by apoA-1 and therapeutic immunoglobulin (IVIG) pre-incubation. Conclusions In MI patients, anti-apoA-1 IgG is independently associated with MACE at 1-year, interfering with a currently unknown aldosterone-dependent RHR determinant. Knowing whether anti-apoA-1 IgG assessment could be of interest to identify an MI patient subset susceptible to benefit from apoA-1/IVIG therapy remains to be demonstrate

    Estimation of salt intake and excretion in children in one region of Switzerland: a cross-sectional study.

    Get PDF
    PURPOSE Salt intake among children in Switzerland is unknown. The objectives of this study were to determine salt excretion and to identify the main dietary sources of salt intake among children in one region of Switzerland. METHODS We conducted a cross-sectional study using a convenient sample of children 6-16 years of age in Valais, Switzerland, between 2016 and 2018. All children visiting several regional health care providers and without any clinical condition that could affect sodium intake or excretion were eligible. Each child completed a 24-h urine collection to assess salt excretion and two dietary questionnaires to assess dietary sources of salt intake. Weight and height were measured. RESULTS Data were available on 94 children (55 boys and 39 girls; mean age 10.5 years; age range 6-16 years). The mean 24-h salt urinary excretion was 5.9 g [SD 2.8; range 0.8-16.0; 95% confidence interval (CI) 5.3-6.5]. Two-thirds (62%) of the children had salt excretions above recommendations of maximum intake (i.e., ≥ 2 g per day for children up to 6 years of age and ≥ 5 g per day for children 7-16 years of age). The salt excretion tended to be higher during the week-end (6.0 g, 95% CI 5.4-6.6) than during the week (5.4 g, 95% CI 4.3-6.7). The main sources of salt intake were pastas, potatoes, and rice (23% of total salt intake), pastries (16%), bread (16%), and cured meats (10%). One child out of three (34%) added salt to their plate at the table. CONCLUSIONS Salt intake in children in one region of Switzerland was high. Our findings suggest that salt intake in children could be reduced by lowering salt content in commonly eaten foods. TRIAL REGISTRATION NUMBER NCT02900261

    Detection and Functional Characterization of a 215 Amino Acid N-Terminal Extension in the Xanthomonas Type III Effector XopD

    Get PDF
    During evolution, pathogens have developed a variety of strategies to suppress plant-triggered immunity and promote successful infection. In Gram-negative phytopathogenic bacteria, the so-called type III protein secretion system works as a molecular syringe to inject type III effectors (T3Es) into plant cells. The XopD T3E from the strain 85-10 of Xanthomonas campestris pathovar vesicatoria (Xcv) delays the onset of symptom development and alters basal defence responses to promote pathogen growth in infected tomato leaves. XopD was previously described as a modular protein that contains (i) an N-terminal DNA-binding domain (DBD), (ii) two tandemly repeated EAR (ERF-associated amphiphillic repression) motifs involved in transcriptional repression, and (iii) a C-terminal cysteine protease domain, involved in release of SUMO (small ubiquitin-like modifier) from SUMO-modified proteins. Here, we show that the XopD protein that is produced and secreted by Xcv presents an additional N-terminal extension of 215 amino acids. Closer analysis of this newly identified N-terminal domain shows a low complexity region rich in lysine, alanine and glutamic acid residues (KAE-rich) with high propensity to form coiled-coil structures that confers to XopD the ability to form dimers when expressed in E. coli. The full length XopD protein identified in this study (XopD1-760) displays stronger repression of the XopD plant target promoter PR1, as compared to the XopD version annotated in the public databases (XopD216-760). Furthermore, the N-terminal extension of XopD, which is absent in XopD216-760, is essential for XopD type III-dependent secretion and, therefore, for complementation of an Xcv mutant strain deleted from XopD in its ability to delay symptom development in tomato susceptible cultivars. The identification of the complete sequence of XopD opens new perspectives for future studies on the XopD protein and its virulence-associated functions in planta

    The α1-adrenergic receptors: diversity of signaling networks and regulation

    Get PDF
    The α1-adrenergic receptor (AR) subtypes (α1a, α1b, and α1d) mediate several physiological effects of epinephrineand norepinephrine. Despite several studies in recombinant systems and insightfrom genetically modified mice, our understanding of the physiological relevance and specificity of the α1-AR subtypes is still limited. Constitutive activity and receptor oligomerization have emerged as potential features regulating receptor function. Another recent paradigm is that βarrestins and G protein-coupled receptors themselves can act as scaffolds binding a variety of proteins and this can result in growing complexity of the receptor-mediated cellular effects. The aim of this review is to summarize our current knowledge on some recently identified functional paradigms and signaling networks that might help to elucidate the functional diversity of the α1-AR subtypes in various organs

    Effects of interpersonal violence-related post-traumatic stress disorder (PTSD) on mother and child diurnal cortisol rhythm and cortisol reactivity to a laboratory stressor involving separation

    Get PDF
    Women who have experienced interpersonal violence (IPV) are at a higher risk to develop posttraumatic stress disorder (PTSD), with dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis and impaired social behavior. Previously, we had reported impaired maternal sensitivity and increased difficulty in identifying emotions (i.e. alexithymia) among IPV-PTSD mothers. One of the aims of the present study was to examine maternal IPV-PTSD salivary cortisol levels diurnally and reactive to their child’s distress in relation to maternal alexithymia. Given that mother-child interaction during infancy and early childhood has important long-term consequences on the stress response system, toddlers’ cortisol levels were assessed during the day and in response to a laboratory stressor. Mothers collected their own and their 12-48 month-old toddlers’ salivary samples at home three times: 30 min after waking up, between 2-3 pm and at bedtime. Moreover, mother-child dyads articipated in a 120-min laboratory session, consisting of 3 phases: baseline, stress situation (involving mother-child separation and exposure to novelty) and a 60-min regulation phase. Compared to non-PTSD controls, IPV-PTSD mothers -but not their toddlers-, had lower morning cortisol and higher bedtime cortisol levels. As expected, IPV-PTSD mothers and their children showed blunted cortisol reactivity to the laboratory stressor. Maternal cortisol levels were negatively correlated to difficulty in identifying emotions. Our data highlights PTSDIPV-related alterations in the HPA system and its relevance to maternal behavior. Toddlers of IPV-PTSD mothers also showed an altered pattern of cortisol reactivity to stress that potentially may predispose them to later psychological disorders

    The SIB Swiss Institute of Bioinformatics' resources: focus on curated databases

    Get PDF
    The SIB Swiss Institute of Bioinformatics (www.isb-sib.ch) provides world-class bioinformatics databases, software tools, services and training to the international life science community in academia and industry. These solutions allow life scientists to turn the exponentially growing amount of data into knowledge. Here, we provide an overview of SIB's resources and competence areas, with a strong focus on curated databases and SIB's most popular and widely used resources. In particular, SIB's Bioinformatics resource portal ExPASy features over 150 resources, including UniProtKB/Swiss-Prot, ENZYME, PROSITE, neXtProt, STRING, UniCarbKB, SugarBindDB, SwissRegulon, EPD, arrayMap, Bgee, SWISS-MODEL Repository, OMA, OrthoDB and other databases, which are briefly described in this article

    Polymer microfluidic chips for electrochemical and biochemical analyses

    No full text
    Our recent developments concerning the fabrication of polymer microchips and their applications for biochemical analyses are reviewed. We first describe two methods of fabrication of polymer microfluidic chips, namely UV-laser photoablation and plasma etching that are well suited for the prototyping and mass fabrication of microchannel networks with integrated microelectrodes. These microanalytical systems can be coupled with various detection means including mass spectrometry, and their applications in capillary electrophoresis are presented here. We also present how UV laser photoablation can be used for the patterning of biomolecules on polymer surfaces for generating two-dimensional arrays of microspots to carry out affinity assays. Finally, the use of the microchips for the development of fast affinity and immunological assays with electrochemical detection is presented, demonstrating the potential of these polymer microchips for medical diagnostics and drug discovery

    Inhibitory action of mibefradil on calcium signaling and aldosterone synthesis in bovine adrenal glomerulosa cells,”

    No full text
    ABSTRACT Mibefradil is a new cardiovascular drug with peculiar Ca ϩϩ antagonistic properties. The most remarkable feature of mibefradil is its unique relative selectivity for T type calcium channels, a property that has been proposed to explain in part the beneficial pharmacological and clinical profiles of this drug. In adrenal glomerulosa cells, aldosterone biosynthesis and secretion in response to angiotensin II or extracellular potassium is dependent on a sustained influx of Ca ϩϩ through T type Ca ϩ
    corecore