5,554 research outputs found

    Rust, Mold, and Cracks: Post-Dualist Approaches on Spaces and Images

    Get PDF
    Using the piece of video art “Rust, Mold, and Cracks”, created by the author, this paper addresses questions related to space, ruins, and different temporalities. Calling upon the authors Georg Simmel and Milton Santos, the text proposes an approach to ruins that goes further than dualist concepts such as abandoned/not abandoned, or modern/outdated. It also discusses the role of Nature in this scenario. In light of this situation, space and time are under mutable reorganisation, as pointed out by David Harvey. Different arrangements between them shall produce diverse modernities. Considering images as objects resulting from this spatiotemporal modification, this article comments on their accumulation

    Coherent beam superposition of ten diode lasers with a Dammann grating

    Get PDF
    We demonstrate the use of a binary diffractive optical element in a very simple setup to convert the multilobed beam from a low fill factor array of coherent laser diodes into a quasi-Gaussian beam. The phase profile of the grating is determined with a phase retrieval algorithm. Experimentally, the conversion efficiency reaches more than 44%. We also establish that this setup can be used to make an effective measurement of the coherency of the laser array

    The first meeting of the European Register of Cystic Echinococcosis (ERCE)

    Get PDF
    6 páginas, 3 figuras, 1 tablaCystic echinococcosis (CE) is a zoonotic parasitic disease endemic in southern and eastern European countries. The true prevalence of CE is difficult to estimate due to the high proportion of asymptomatic carriers who never seek medical attention and to the underreporting of diagnosed cases, factors which contribute to its neglected status. In an attempt to improve this situation, the European Register of Cystic Echinococcosis (ERCE), was launched in October 2014 in the context of the HERACLES project. ERCE is a prospective, observational, multicentre register of patients with probable or confirmed CE. The first ERCE meeting was held in November 2015 at the Italian National Institute of Health (Istituto Superiore di Sanita, ISS) in Rome, to bring together CE experts currently involved in the Register activities, to share and discuss experiences, and future developments. Although the Register is still in its infancy, data collected at the time of writing this report, had outnumbered the total of national cases reported by the European endemic countries and published by the European Centre for Disease Prevention and Control in 2015. This confirms the need for an improved reporting system of CE at the European level. The collection of standardized clinical data and samples is expected to support a more rational, stage-specific approach to clinical management, and to help public authorities harmonize reporting of CE. A better understanding of CE burden in Europe will encourage the planning and implementation of public health policies toward its control.This research received funding from the European Community’s Seventh Framework Programme under the grant agreement 602051 (Project HERACLES: Human cystic Echinococcosis ReseArch in CentraL and Eastern Societies; http:// www.heracles-fp7.eu/).Peer reviewe

    Quadrature integration techniques for random hyperbolic PDE problems

    Get PDF
    In this paper, we consider random hyperbolic partial differential equation (PDE) problems following the mean square approach and Laplace transform technique. Randomness requires not only the computation of the approximating stochastic processes, but also its statistical moments. Hence, appropriate numerical methods should allow for the efficient computation of the expectation and variance. Here, we analyse different numerical methods around the inverse Laplace transform and its evaluation by using several integration techniques, including midpoint quadrature rule, Gauss?Laguerre quadrature and its extensions, and the Talbot algorithm. Simulations, numerical convergence, and computational process time with experiments are shown.This research has been funded by the Spanish Ministerio de Economía, Industria y Competitividad (MINECO), the Agencia Estatal de Investigación (AEI) and Fondo Europeo de Desarrollo Regional (FEDER UE) grant MTM2017-89664-

    An ETD method for multi-asset American option pricing under jump-diffusion model

    Get PDF
    In this paper, we propose a numerical method for American multi-asset options under jump-diffusion model based on the combination of the exponential time differencing (ETD) technique for the differential operator and Gauss-Hermite quadrature for the integral term. In order to simplify the computational stencil and improve characteristics of the ETD-scheme mixed derivative eliminating transformation is applied. The results are compared with recently proposed methods.Ministerio de Ciencia, Innovación y Universidades, Grant/Award Number: MTM2017- 89664-P; Ministerio de Economía y Competitividad, Grant/Award Number: PID2019-107685RB-I0

    Efficient discrete-event based particle tracking simulation for high energy physics

    Get PDF
    This work presents novel discrete event-based simulation algorithms based on the Quantized State System (QSS) numerical methods. QSS provides attractive features for particle transportation processes, in particular a very efficient handling of discontinuities in the simulation of continuous systems. We focus on High Energy Physics (HEP) particle tracking applications that typically rely on discrete timebased methods, and study the advantages of adopting a discrete event-based numerical approach that resolves efficiently the crossing of geometry boundaries by a traveling particle. For this purpose we follow two complementary strategies. First, a new co-simulation technique connects the Geant4 simulation toolkit with a standalone QSS solver. Second, a new native QSS numerical stepper is embedded into Geant4. We compare both approaches against the latest Geant4 default steppers in different HEP setups, including a complex realistic scenario (the CMS particle detector at CERN). Our techniques achieve relevant simulation speedups in a wide range of scenarios, particularly when the intensity of discrete-event handling dominates performance in the solving of the continuous laws of particle motion.Fil: Santi, Lucio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; ArgentinaFil: Rossi, Lucas Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; ArgentinaFil: Castro, Rodrigo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentin

    X-ray analog pixel array detector for single synchrotron bunch time-resolved imaging

    Full text link
    Dynamic x-ray studies may reach temporal resolutions limited by only the x-ray pulse duration if the detector is fast enough to segregate synchrotron pulses. An analog integrating pixel array detector with in-pixel storage and temporal resolution of around 150 ns, sufficient to isolate pulses, is presented. Analog integration minimizes count-rate limitations and in-pixel storage captures successive pulses. Fundamental tests of noise and linearity as well as high-speed laser measurements are shown. The detector resolved individual bunch trains at the Cornell High Energy Synchrotron Source (CHESS) at levels of up to 3.7x10^3 x-rays/pixel/train. When applied to turn-by-turn x-ray beam characterization single-shot intensity measurements were made with a repeatability of 0.4% and horizontal oscillations of the positron cloud were detected. This device is appropriate for time-resolved Bragg spot single crystal experiments.Comment: 9 pages, 11 figure

    An efficient method for solving spread option pricing problem: numerical analysis and computing

    Get PDF
    This paper deals with numerical analysis and computing of spread option pricing problem described by a two-spatial variables partial differential equation. Both European and American cases are treated. Taking advantage of a cross derivative removing technique, an explicit difference scheme is developed retaining the benefits of the one-dimensional finite difference method, preserving positivity, accuracy, and computational time efficiency. Numerical results illustrate the interest of the approach.This work has been partially supported by the European Union in the FP7- PEOPLE-2012-ITN Program under Grant Agreement no. 304617 (FP7 Marie Curie Action, Project Multi-ITN STRIKE-Novel Methods in Computational Finance) and the Ministerio de Economía y Competitividad Spanish Grant MTM2013-41765-P
    corecore