
mathematics

Article

Quadrature Integration Techniques for Random Hyperbolic
PDE Problems

Rafael Company 1,* , Vera N. Egorova 2 and Lucas Jódar 1

����������
�������

Citation: Company, R.; Egorova, V.N.;

Jódar, L. Quadrature Integration

Techniques for Random Hyperbolic

PDE Problems. Mathematics 2021, 9,

160. https://doi.org/10.3390/

math9020160

Received: 7 October 2020

Accepted: 12 January 2021

Published: 14 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Instituto de Matemática Multidisciplinar, Universitat Politècnica de València, Camino de Vera s/n,
46022 Valencia, Spain; ljodar@imm.upv.es

2 Departamento de Matemática Aplicada y Ciencias de la Computación, Universidad de Cantabria,
Avenida de los Castros s/n, 39005 Santander, Spain; vera.egorova@unican.es

* Correspondence: rcompany@imm.upv.es

Abstract: In this paper, we consider random hyperbolic partial differential equation (PDE) problems
following the mean square approach and Laplace transform technique. Randomness requires not
only the computation of the approximating stochastic processes, but also its statistical moments.
Hence, appropriate numerical methods should allow for the efficient computation of the expectation
and variance. Here, we analyse different numerical methods around the inverse Laplace transform
and its evaluation by using several integration techniques, including midpoint quadrature rule,
Gauss–Laguerre quadrature and its extensions, and the Talbot algorithm. Simulations, numerical
convergence, and computational process time with experiments are shown.

Keywords: random hyperbolic model; random laplace transform; numerical integration; monte carlo
method; numerical simulation; talbot algorithm

1. Introduction

Random hyperbolic partial differential equations (PDEs) are mathematical models
that describe wave phenomena with applications in various fields: fluid mechanics [1,2],
electromagnetic radiation [3], geosciences [4], and many others. The theory of hyperbolic
problems has been well developed based on the assumption that parameters of the model,
such as coefficients or initial values are exactly known, which is not available in the real
world, where error measurement and the unavailability of the measurement occur. It
causes the increasing interest for the random models, which can estimate the impact of the
uncertainty to the predicted solution.

The solution is found numerically due to the complexity of random models. Following
the mean square approach [5], we can extend existing numerical methods for determin-
istic problems to the random case by applying the Monte Carlo method [6,7] in order to
approximate the statistical moments of the solution. Nevertheless, iterative numerical
methods require the storage of the preliminary results and huge number of repetitions,
which leads to the the necessity of enormous computational resources and makes them
not appropriated to deal with random models. Thus, it becomes urgent to search for an
accurate and fast numerical algorithm. Integral transform is a good alternative, as it allows
us to construct the solution at one fixed point, not necessarily in the whole domain as it
occurs in the case of the finite difference methods, as it is shown in the literature [8].

Integral transform methods convert the original random PDE to an ordinary differen-
tial equation (ODE), which can be solved analytically, in some cases, or numerically. Once
obtained the solution of the random ODE, the inverse transform is applied in order o
restore the solution of the original problem. This inverse transform can be done by the defi-
nition, i.e., integrating over the infinite domain, or by using some numerical techniques [9].
There are several widely used methods: Fourier Series, Stehfest approach [10], and Tal-
bot inverse algorithm [11]. Because the inverse Laplace transform is ill-posed problem,

Mathematics 2021, 9, 160. https://doi.org/10.3390/math9020160 https://www.mdpi.com/journal/mathematics

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCrea

https://core.ac.uk/display/389359766?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-3024-3033
https://orcid.org/0000-0002-9672-6249
https://orcid.org/0000-0002-9672-6249
https://doi.org/10.3390/math9020160
https://doi.org/10.3390/math9020160
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9020160
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/9/2/160?type=check_update&version=2

Mathematics 2021, 9, 160 2 of 16

the regularization property of the numerical algorithm is necessary. In this sense, the Talbot
inverse becomes the best option, since it guarantees the regularization property, while
other numerical inversion schemes fail in dealing with noisy data [12].

In this work, we construct a numerical solution for random hyperbolic PDE models,
not only by constructing the approximating stochastic process solution, but also while
computing its expectation and variance. Thinking of practical applications, we deal with
random models where the uncertainty is described by stochastic processes (s.p.’s) having a
finite degree of randomness ([5], p. 37); this means that the involved s.p.’s take the form

g(x) = G(x, V1, V2, . . . , Vm), (1)

where Vi, 1 ≤ i ≤ m, are mutually independent random variables (r.v.’s).
We propose an analytic-numerical approach that is based on random integral trans-

form technique combined with various numerical integration methods, such as midpoint
rule, Gauss-quadratures, and Talbot inverse [11]. The Monte Carlo method is used for the
evaluations of the integrands involving the solution of random ordinary differential prob-
lems and also for the computation of the expectation and variance of the approximating
stochastic process solution. The oscillatory nature of the appearing integrands deserves
careful attention, because not all of the quadrature rules are advisable [13–15].

The proposed analytical–numerical approach for solving random hyperbolic PDE
problems considered in this paper includes known state of the art of numerical integration
methods, which are compared between themselves in terms of accuracy and compu-
tational time: the midpoint quadrature rule, the Talbot algorithm for Laplace inverse,
the Gauss–Laguerre quadrature, the Exponential-Fitting Gauss-Laguerre quadrature, and
the adaptative quadrature. This comparison is provided to highlight the advantages and
drawbacks of each method. Moreover, this complex approach is compared with standard
finite-difference methods for solving the random hyperbolic PDE problem. In all cases,
the Monte Carlo simulations are used in order to calculate the statistical moments of the
random solution process.

The rest of the paper is organized, as follows. In Section 2, the random hyperbolic
PDE problem is formulated and the random Laplace transform method is briefly described.
Section 3 proposes numerical integration methods for Laplace inverse, while Section 4 gives
an algorithm for Monte Carlo simulations. All of the proposed methods are compared by
the series of numerical tests in Section 5. Section 6 discusses the results.

All of the numerical tests have been carried out by MatLAB, version R2020a, for Win-
dows 10 Home (64-bit), Intel(R) Core(TM) i5-8265U CPU, 1.60 GHz.

2. Preliminaries and Integral Transform for Random Hyperbolic PDE

This section begins by recalling previous results and definitions [8,16]. Let us consider
a complete probability space (Ω,F ,R) and the set Lp with the p-norm of a real-values
random variable Y ∈ Lp(Ω), as defined by

‖Y‖p = (E[|Y|p])1/p, p ≥ 1, (2)

where the expectation E[|Y|p] < ∞, and Lp(Ω) is a Banach space [17]. By using
definition (2), the integrability, continuity, and differentiability of a function Y(t) ∈ Lp(Ω)
can be defined straightforwardly.

Note that, if p = 2, then it is a mean square (m.s.) case. Let C be the class of all m.s.
locally integrated two-stochastic processes (s.p.’s) h(t) defined in R such that h(t) = 0 , for
all negative arguments and the two-norm satisfies

∃c ≥ 0, M > 0 : ‖h(t)‖2 ≤ M exp(ct), ∀t ≥ 0. (3)

Mathematics 2021, 9, 160 3 of 16

Subsequently, for h(t) ∈ C, the m.s. integral

H(s) = L[h(t)](s) =
∫ ∞

0
h(t) exp(−st)dt, (4)

where s is a complex number with real part Re(s) > c0 ≥ 0, and it is called the random
Laplace transform of 2-s.p. h(t). The constant c0 is chosen, such that Re(s) > c0 specifies
the region where H(s) is analytic and it has some form of singularity on the line Re(s) = c0
[9]. If H(s) is known, then the random inverse transform for t > 0 is defined, as follows

h(t) =
1

2πi

∫ α+i∞

α−i∞
H(s) exp(st)ds, (5)

where i stands for the imaginary unit and α > c0 [16].
For the purposes of present study, we recall some of the important properties of the

random Laplace transform (4): if s.p. h(t) is twice m.s. differentiable and h′(t), h′′(t)
belong to C, then

L[h′(t)](s) = sH(s)− h(0+), L[h′′(t)](s) = s2H(s)− sh(0+)− h′(0+). (6)

In this paper, we consider a one-dimensional random hyperbolic PDE modelling the
s.p. of the vibrating string motion u(x, t), depending on the spatial variable x and time t,

utt(x, t)(ξ) = a(x)(ξ)uxx(x, t)(ξ) + b(x)(ξ)ux(x, t)(ξ) + c(ξ)u(x, t)(ξ), x ∈ [0, L], t > 0, ξ ∈ Ω, (7)

u(x, 0)(ξ) = f0(x)(ξ), ut(x, 0)(ξ) = f1(x)(ξ), (8)

u(0, t)(ξ) = g0(t)(ξ), u(L, t)(ξ) = g1(t)(ξ), (9)

where a(x)(ξ) > 0, b(x)(ξ) are m.s.-continuous stochastic processes with a finite degree
of randomness and absolutely integrable with respect to the spatial variable in R; c(ξ) is
a random variable (r.v.). The s.p.’s f0(x)(ξ), f1(x)(ξ), g0(t)(ξ), and g1(t)(ξ) are functions
depending on a finite number of r.v. that represent random initial and boundary conditions
with a finite degree of randomness.

The random hyperbolic partial differential equation (PDE) (7) is solved using an
analytic-numerical method that is based on Laplace transform combined with an appropri-
ate numerical integration technique. In this paper, we consider various quadratures for
inverse Laplace transform.

Following the ideas of [8,18], let us define the random Laplace transform with respect
to the temporal variable, as

U(x, s)(ξ) = L[u(x, t)(ξ)]. (10)

Because u(x, t)(ξ) is a twice m.s. differentiable s.p., one gets

L[utt(x, t)(ξ)] = s2U(x, s)(ξ)− su(x, 0)(ξ)− ut(x, 0)(ξ) = s2U(x, s)(ξ)− s f0(x)(ξ)− f1(x)(ξ). (11)

Subsequently, (7) is transformed to the following random non-homogeneous ordinary
differential equation (ODE) with respect to the spatial variable

a(x)(ξ)Uxx(x, s)(ξ) + b(x)(ξ)Ux(x, s)(ξ) + (c− s2)U(x, s)(ξ) = −[s f0(x)(ξ) + f1(x)(ξ)], (12)

for x ∈ [0, L], ξ ∈ Ω.
Assuming a(x)(ξ) > 0 for each event ξ ∈ Ω, one gets

Uxx(x, s)(ξ) +
b(x)(ξ)
a(x)(ξ)

Ux(x, s)(ξ) +
c− s2

a(x)(ξ)
U(x, s)(ξ) = − s f0(x)(ξ) + f1(x)(ξ)

a(x)(ξ)
. (13)

Mathematics 2021, 9, 160 4 of 16

Equation (13) is a linear second order ODE with respect to the spatial variable, which
can be analytically solved in some cases, or numerically in other cases. Because the
boundary conditions (9) for the PDE are functions on t, the boundary conditions for (13)
are the corresponding Laplace transforms of (9):

U(0, s)(ξ) = L[g0(t)(ξ)], U(L, s)(ξ) = L[g1(t)(ξ)]. (14)

Once obtaining the solution U(x, s)(ξ), a real-valued u(x, t)(ξ) is restored by while
using random inverse Laplace transform that is given by (5). Taking advantage of the
relationship between the inverse Laplace transform and Fourier cosine integrals, see [9],
the following formula is used

u(x, t)(ξ) =
2eαt

π

∫ ∞

0
Re[U(x, α + iw)(ξ)] cos(wt)dw, ξ ∈ Ω, (15)

where Re[·] stands for the real part of a complex number. Note that the integrand appearing
in (15) has an oscillatory kernel that deserves special care for the numerical integration.

3. Numerical Integration Methods

This section describes briefly acknowledged integration methods for the integrals of
the type (15).

THe numerical solution of Equation (7) is constructed in the domain ∆ = [0; L]× [0; T]
for each fixed event ξ. Let us introduce a uniform grid {xj, tn}, such that

xj = jh, h =
L

Nx
, j = 0, . . . , Nx; tn = nk, k =

T
Nt

, n = 0, . . . , Nt. (16)

At each node (xj, tn), the numerical solution is defined by un
j (ξ) for each realization

of ξ and it is obtained by approximating the integral (15). Hence, at every fixed (xj, tn), the
following function is defined

f j,n(w) = f j,n(w, ξ) = Re
[
U(xj, α + iw)(ξ)

]
cos(wtn), (17)

where U(xj, α + iw)(ξ) is the numerical solution of ODE (13) at the point xj for fixed value
of s = α + iw. Now, we briefly describe all of the considered methods for numerical
integration.

3.1. Midpoint Quadrature Rule

The midpoint quadrature rule is a method of approximation of integral (15) based
on the Riemann sums, the simplest case of Newton–Cotes open formulas, for truncated
domain [0, R]. In the general case, the midpoint quadrature rule is written, as follows

∫ ∞

0
f (w)dw ≈

∫ R

0
f (w)dw =

N

∑
k=0

f (wk+1/2)hMP + O(h2), (18)

where wk+1/2 =
(

k + 1
2

)
hMP, hMP = R

N , k = 0, . . . , N − 1.
It is well known that the main advantage of this method is its simplicity of implemen-

tation and the consideration of all the information regarding the integrand, which makes it
applicable for a wider class of integrand functions [14]. However, the high accuracy of the
quadrature requires large enough value of N, leading to the increasing computational cost.
In the case of improper integral (in the infinite domain), the method can also be sensitive to
the choice of R.

Mathematics 2021, 9, 160 5 of 16

3.2. Gauss-Laguerre Quadrature

The novelty of Gauss quadratures is to choose nodes where the integrand is evaluated
in order to minimize the error of approximation. It is a good alternative to Newton–Cotes
formulas, especially when the evaluation of function itself requires a lot of computational
resources, because good accuracy can be reached with a small number, four or five, of nodes
if the integrand is well conditioned. This is not the case when the integrand is of oscillatory
type [19].

The improper integral is approximated by Gauss–Laguerre (GL) quadrature of NGL
nodes by the following sum, see [20],

∫ ∞

0
f (w)dw ≈

NGL

∑
k=1

γk f (wk)ewk , (19)

where wk is the k-th root of Laguerre polynomial LNGL(w), γk is the weight of the quadrature
given by

γk =
wk

(NGL + 1)2
[
LNGL+1(wk)

]2 , k = 1, . . . , NGL. (20)

3.3. Exponentially-Fitted Gauss-Laguerre Quadrature

Exponential fitting is an approach that is used in numerical differentiation, interpola-
tion, and integration for improving the accuracy of the methods. Because integrand in (15)
is oscillating, Exponentially-fitted Gauss–Laguerre quadrature (EF-GL), as proposed in [21],
could be a good option. For EF-GL, nodes and weights depend on integrand and cannot be
defined a priori. The computation of these NGL pairs of nodes and weights is based on the
solution of a nonlinear system of NGL equations, which leads to additional computational
cost. In [21], the numerical algorithm is described in details. Further, in Section 5, we
compare the accuracy and computational time of GL and EF-GL quadrature rules.

3.4. Talbot Inverse

The method of Talbot for the Laplace inversion problem [11] is based on numerical
contour integration. Instead of formula (15), the Bromwich integral is used

un
j (ξ) =

1
2πi

∫ α+i∞

α−i∞
estn

U(xj, s)ds. (21)

The contour deformation is used in order to obtain the Hankel contour and exploit the
exponential factor, which makes the integral suitable for further application of a Newton–
Cotes formula [22]. The Talbot inversion quadrature for NTI nodes is written, as follows

un
j (ξ) =

2
5tn

NTI−1

∑
k=0

Re
[
γkU(xj,

wk
tn)
]
, (22)

where wk are the nodes and γk are the weights defined by

w0 =
2NTI

5
, wk =

2πk
5

(
cot
(

kπ

NTI
+ i
))

, (23)

γ0 = 0.5 exp(w0), γk = exp(wk) ·
[

1 +
kπ

NTI

(
1 + cot2

(
kπ

NTI

)
− i cot

(
kπ

NTI

))]
. (24)

Here, the number of nodes NTI should be chosen in accordance with desired accuracy:
for n significant digits NTI = d1.7ne. It shows the flexibility of the method and the high
degree of accuracy with fast convergence. Moreover, as stated in [12], the main advantage of
the Talbot algorithm is the regularization property, which means the ability to handle noisy
data. It is important for the inverse Laplace transform problem due to its ill-posedness and

Mathematics 2021, 9, 160 6 of 16

it becomes even more urgent in the random case dealing with perturbed initial conditions
or parameters of the problem.

Summarizing, a numerical solution is constructed following the steps of Algorithm 1
for all of the described methods.

Algorithm 1: Numerical solution for deterministic string vibrating problem

Initialization: set the mesh {xj, tn} by (16);
Set initial conditions u(xj, 0) = f0(xj), j = 0, . . . , Nx;
Set α > c0;
Set number of nodes of the quadrature N;
Set n = 0;
while tn < T do

Increment n;
for j = 0, . . . , Nx do

Compute nodes and weigths {wk, γk} of the chosen quadrature
- Midpoint rule: uniform grid with N nodes ;
- GL quadrature: nodes wk are the roots of the Laguerre polynomial of N-th order, k = 1, . . . , N;
- EF-GL quadrature [21]: nodes wk and weights γk are found by solving nonlinear system of 2N equations;
- Talbot inverse: nodes wk and weights γk, k = 0, . . . , N − 1 are defined by (23)–(24);
Get the approximated value un

j :

- Midpoint rule: integral in (15) is approximated by (18);
- GL and EF-GL quadratures: integral in (15) is approximated by (19)–(20);
- Talbot inverse: formula (22) ;

end
end

4. Monte Carlo Method for Random Hyperbolic PDE

The coefficients of the random m.s. Equation (7) and corresponding initial and bound-
ary conditions (9) are stochastic processes (s.p’s) that are defined in a complete probability
space (Ω,F ,P), i.e., s.p.’s a(x), b(x), f0(x), f1(x), g0(x) and g1(x) are described as contin-
uous s.p.’s with with one-degree of randomness.

The solution of the random m.s. problem is approximated by using the the Monte
Carlo approach [6,7], when the expectation E[u(x, t)] is approximated by the average of a
sufficiently large number of realizations ξ ∈ Ω of the corresponding deterministic realized
transformed random ordinary differential problem. The Algorithm 2 describes the steps of
the numerical solution.

Algorithm 2: Numerical solution for random hyperbolic PDE problem

Initialization: set the mesh {xj, tn} by (16);
Set number of the MC realizations NMC;
Generate NMC random variables for s.p.’s a(x), b(x), f0(x), f1(x), g0(x);
Choose the method of numerical integration for m = 1, . . . NMC do

Define s.p.’s a(x), b(x), f0(x), f1(x), g0(x) for fixed realization;
Run Algorithm 1 to obtain the numerical solution um of the deterministic problem;
Increment m;

end
Compute E[u] = ∑NMC

m=1
um

NMC
;

Compute E[u2] = ∑NMC
m=1

u2
m

NMC
;

Compute
√

Var[u] =
√
E[u2]− (E[u])2

Mathematics 2021, 9, 160 7 of 16

5. Numerical Results

This section deals with the comparison of the above-described methods of numerical
integration and Laplace inversion for several test problems.

5.1. Deterministic PDE Problem with Constant Coefficients

We start with simple one dimensional deterministic problem with a known analytical
solution in order to check the viability of the proposed numerical integration techniques.
The deterministic example corresponds to one fixed event ξ ∈ Ω. Instead of the bounded
spatial domain [0; L], the whole real axis R is considered. Thus, no boundary conditions
are needed. We also assume that a > 0, b, and c are constants, i.e., the following wave
equation is considered

utt(x, t) = a2uxx(x, t) + bux(x, t) + cu(x, t), x ∈ R, t > 0, (25)

subject to initial conditions u(x, 0) = f0(x), ut(x, 0) = f1(x).
This problem admits an analytical solution that can be written in terms of Bessel

function of the first kind, see [23], p. 574, Equation 6.1.5, as follows

• for c− 1
4 a−2b2 = σ2 > 0:

u(x, t) =
1
2

f (x + at) exp
(

bt
2a

)
+

1
2

f (x− at) exp
(
− bt

2a

)

+
σt
2a

exp
(
− bx

2a2

) ∫ x+at

x−at
exp

(
bξ

2a2

) I1

(
σ
√

t2 − (x− ξ)2/a2
)

√
t2 − (x− ξ)2/a2

f (ξ)dξ

+
1
2a

exp
(
− bx

2a2

) ∫ x+at

x−at
exp

(
bξ

2a2

)
I0

(
σ
√

t2 − (x− ξ)2/a2
)

g(ξ)dξ,

(26)

where I0(z) and I1(z) are the modified Bessel function of the first kind;
• for c− 1

4 a−2b2 = −σ2 < 0:

u(x, t) =
1
2

f (x + at) exp
(

bt
2a

)
+

1
2

f (x− at) exp
(
− bt

2a

)

− σt
2a

exp
(
− bx

2a2

) ∫ x+at

x−at
exp

(
bξ

2a2

) J1

(
σ
√

t2 − (x− ξ)2/a2
)

√
t2 − (x− ξ)2/a2

f (ξ)dξ

+
1
2a

exp
(
− bx

2a2

) ∫ x+at

x−at
exp

(
bξ

2a2

)
J0

(
σ
√

t2 − (x− ξ)2/a2
)

g(ξ)dξ,

(27)

where J0(z) and J1(z) are Bessel function of the first kind.

In order to test the proposed numerical integration methods we apply Laplace trans-
form, as described in Section 2, and obtain a deterministic version of Equation (13):

Uxx(x, s) +
b
a2 Ux(x, s) +

c− s2

a2 U(x, s)(ξ) = − s f0(x) + f1(x)
a2 . (28)

Applying the non-unitary Fourier transform with angular frequency

Û(w, s) = F [U(x, s)] =
∫ ∞

−∞
U(x, s) exp(−ixw)dx, (29)

Equation (13) takes the following form

− w2Û(w, s) + iw
b
a2 Û(w, s) +

c− s2

a2 Û(w, s) = −F
[

s f0(x) + f1(x)
a2

]
. (30)

Mathematics 2021, 9, 160 8 of 16

Algebraic Equation (30) is solved directly

Û(w, s) =
−F

[
s f0(x)+ f1(x)

a2

]
−w2 + iw b

a2 +
c−s2

a2

. (31)

Hence, the solution U(x, s) of (28) can be obtained by applying inverse Fourier trans-
form to (31).

In the next Example 1, we consider a particular case of Equation (25) with constant
coefficients and trigonometric initial conditions.

Example 1. Let us consider deterministic problem (25) with coefficients a = 2, b = 1, c = 3,
and initial conditions f0(x) = cos(x) and f1(x) = sin(x).

Numerical solution is constructed in the truncated domain [0, L]× [0, T], L = 5, T = 1,
for discrete uniformly distributed nodes (16), Nx = 5, Nt = 10, by applying the described
in previous section methods, see Algorithm 1. We set α = 1.

Applying the inverse Fourier transform to (31), one obtains

U(x, s) =
1

2π

[
πe−xi(s + i)

a2 + bi + (s2 − c)
+

πexi(s− i)
a2 − bi + (s2 − c)

]
, s = α + iw, (32)

where i is the imaginary unit. Once the solution of ODE (28) is obtained, formula (15) is used
to restore the solution of the PDE while using various numerical integration techniques.

Note that Equation (25) admits the analytical solution, as described above. Because
the function u(x, t) is close to zero, we compute the relative error of the discrete numerical
solution at the mesh nodes in order to estimate the accuracy of the methods

RelErr(j, n) =
|uref(xj, tn)−Unum(xj, tn)|

|uref(xj, tn)| , (33)

where Unum is the matrix of numerical solution Unum = {un
j }, j = 0, . . . , Nx, n = 0, . . . , Nt,

as computed by Algorithm 1; uref(xj, tn) is the reference value at the point (xj, tn). In this
example, as the exact solution is known, the reference value is equal to this exact solution.
For other cases where the exact solution is not available, a reference value is obtained
using accurate finite difference method (FDM) for solving the original PDE (7). The total
computational time for the proposed methods are presented in Table 1, together with the
maximum of RelErr(j, n).

The adaptative quadrature (MatLAB function integral [24]) has the same order of
accuracy as the midpoint rule, but it requires greater computational resources. Thus, it will
not be considered in further more complicated examples.

For the Talbot algorithm M = 17 is chosen to guarantee the accuracy up to 10 sig-
nificant digits [22]. Even in that case, the method performs much faster than standard
numerical integration methods for (15). Thus, the Talbot inverse method is found to be the
most effective method for the deterministic case with constant coefficients.

Table 1. Comparison of various numerical methods for problem (25) with a = 2, b = 1 and c = 3
(Example 1).

Method Error CPU-Time, s

Midpoint rule (R = 104, hMQ = 0.1) 4.4700× 10−7 0.59
Gauss-Laguerre (NGL = 25) 3.5551× 10−1 0.05
EF-GL (five nodes) 7.9303 3.97
Talbot inverse (M = 17) 7.3457× 10−11 0.02
Adaptative quadrature 4.8559× 10−6 7.53

Mathematics 2021, 9, 160 9 of 16

The relative errors for Midpoint rule and Talbot inverse methods are plotted in
Figure 1. Because no boundary conditions are posed for the problem, the largest values of
the relative errors are situated at the boundary x = L.

Figure 1. Distribution of the relative error among space and time for midpoint rule (left) and Talbot inverse (right) methods
in Example 1.

Table 2 presents a comparison of GL and EF-GL quadratures in terms of the maximum
relative error and the CPU-time varying the number of nodes NGL. It is important to notice
that the CPU-time may vary from simulation to simulation, thus only the order should
be taken into account. In the case of GL quadrature, we find out that the computational
time is similar with increasing number of nodes, while the CPU-time for EF-GL method is
increasing exponentially. The convergence of the GL quadrature is shown, while taking the
results shown in Table 1 into account: the error reduces significantly with an increasing
number of nodes. The potential improvement of the GL method by the exponential fitting
expectedly has higher computational cost, due to the solution of the nonlinear system at
each point of the computational domain. However, the accuracy of the EF-Gl quadrature for
this example with oscillating integrand has not been improved when comparing with the
standard GL rule. Thus, it will not be considered in further more complicated examples.

Table 2. Gauss–Laguerre (GL) and Exponentially-fitted Gauss–Laguerre quadrature (EF-GL) methods
results, depending on number of nodes of the quadrature for Example 1.

NGL 3 5 8 15

GL Error 8.2739 7.4679 2.5601 1.4560
GL CPU-time, s 0.02 0.02 0.05 0.05

EF-GL Error 9.4937 7.9303 7.5438 3.9366× 103

EF-GL CPU-time, s 0.44 1.84 15.84 430.89

The accuracy of the midpoint rule depends on the truncation R and step size hMP.
A bigger domain, as well as smaller step size, lead to an increased computational time.
Figure 2 presents the plots of errors and the CPU-time for fixed step size hMP = 10−1 with
respect to increasing domain. The accuracy in dependence on the step size hMP is also
studied. In Table 3, the maximum relative error is reported for various hMP and fixed
R = 104. The maximum relative error is decreasing with step size until 4.4699× 10−7

(hMP = 1/16); further fragmentation of the step size does not reduce the error for R = 104.

Mathematics 2021, 9, 160 10 of 16

Table 3. The maximum relative error and computational time of the midpoint quadrature rule with
respect to step size hMP for Example 1.

hMP Error CPU-Time, s

1/1 2.8832× 10−1 0.06
1/2 3.1862× 10−2 0.06
1/4 7.0942× 10−5 0.19
1/8 4.4700× 10−7 0.22
1/16 4.4699× 10−7 0.53
1/32 4.4699× 10−7 1.03
1/64 4.4699× 10−7 1.47

10
2

10
3

10
4

10
5

10
6

R

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

R
e
lE

rr
(u

(x
,t
))

10
2

10
3

10
4

10
5

10
6

R

10
-2

10
-1

10
0

10
1

10
2

C
P

U
-t

im
e
,
s

Figure 2. Error and total computational time of the midpoint rule with respect to the domain size R with fixed h = 10−1 for
Example 1.

5.2. Deterministic PDE with Non-Constant Coefficients

In the case of non-constant coefficients in (13), the analytical solution is not always
available; thus, FDM is applied to construct a reference numerical solution. Note that the
function U(x, s) that is used in expression (17) means the value of the numerical solution
of the ODE (13) at the fixed point x for fixed parameter s.

Equation (13) is discretized by the central differences on the same mesh {xj}, j =
0, . . . , Nx, as follows

Uj+1 − 2Uj + Uj−1

h2 +
b(xj)

a(xj)

Uj+1 −Uj−1

2h
+

c− s2

a(xj)
Uj = −

s f0(xj) + f1(xj)

a(xj)
, j = 1, . . . , Nx − 1, (34)

where Uj stands for the approximated value of U(x, s) at the node xj. The values at the
boundaries are found from the boundary conditions by applying the Laplace transform

U0 = L[g0(t)], UNx = L[g1(t)]. (35)

Hence, the integrand (17) has to be evaluated at each fixed node of the computational
grid in order to approximate integral (15), which provokes a significant augment of the
CPU-time. In the next example, we increase the complexity by regarding a variable
coefficients deterministic problem.

Because the analytical solution for the deterministic PDE problem in general form (7)
is not available, a numerical method has to be employed to obtain the reference numerical

Mathematics 2021, 9, 160 11 of 16

solution. We consider an explicitly centred in time and space finite difference scheme for
the mesh function un

j ≈ u(xj, tn):

un+1
j − 2un

j + un−1
j

(∆t)2 = a(xj)
un

j+1 − 2un
j + un

j−1

(∆x)2 + b(xj)
un

j+1 − un
j−1

2∆x
+ cun

j , (36)

where j = 1, . . . , Nx, n = 2, . . . , Nt. The initial conditions (8) are used in order to obtain
the solution at the first time levels t0 and t1. The derivative in (8) is approximated by
the forward difference. Because the considered scheme is conditionally stable, the step
sizes ∆t and ∆x are chosen to guarantee the stability. In order to obtain a good approxi-
mation, which could be considered as the reference solution, the mesh should be chosen
appropriately fine.

Example 2. Let us consider a deterministic vibrating string problem (7) on rectangle [0, L]×
[0, T], L = 0.5, T = 0.2. We set non-constant coefficients a(x) = 9x + 1, b = −ex, c = −5,
initial conditions f0(x) = x(x− L) and f1(x) = 0, and boundary conditions g0(t) = g1(t) = 0.

The numerical solution is constructed by the Algorithm 1, choosing Nx = 10, Nt = 5.
For the midpoint rule, N = 100 and R = 100 are used. Table 4 presents the comparison of
the methods in terms of maximum relative error and computational time. The reference
solution is the numerical solution that is computed by the FDM (36) in refined mesh
(Nx = 100, Nt = 16,000), which preserves the stability of the scheme. Because an explicit
method is used and no iterative procedures are needed for solving nonlinear system at
each time-level, the total computational time is comparably small: 0.15 s. Figure 3 plots
the reference solution.

Table 4. A comparison of various methods of numerical integration for Example 2.

Method Error CPU-Time, s

Midpoint quadrature 4.5628× 10−2 116.38
Talbot inverse 7.1305× 10−2 51.00
Gauss-Laguerre (9 nodes) 7.4450× 10−1 5.00
Gauss-Laguerre (25 nodes) 7.9014× 10−2 17.48

Figure 4 plots the solution at the moment t = T. The midpoint rule and Talbot inverse
method perform more accurately than GL quadrature of nine nodes, but they require
more computational time due to larger number of calls of integrand (17). However, taking
25 nodes in the GL quadrature, the accuracy has been improved significantly.

Mathematics 2021, 9, 160 12 of 16

Figure 3. Reference solution for Example 2 computed by the finite difference method (FDM) (36).

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

x

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

u
(x

,T
)

FDM (reference)

Midpoint rule

GL quadrature

Talbot inv

Figure 4. Numerical solution for Example 2 at the moment t = T obtained by considered methods.

5.3. Random PDE with Constant Coefficients

In this subsection, we deal with random models with constant coefficient random
variables. It is remarkable that, in this case, we need not only the computation of the
approximation s.p. solution, but also the computation of its statistical moments.

Example 3. We consider a random version of problem (25), with a ∼ N (2, 0.25), b, c ∼
Beta(2, 5). In order to approximate the mean and variance of the solutions, the Monte Carlo
method with NMC simulations is used.

Expectation and variance of the exact solution for the random hyperbolic PDE (25)
are plotted in Figure 5. As in previous examples, we compare the proposed methods of
integration and Laplace inverse in terms of maximum relative error and computational time.
Table 5 presents the results for various NMC. The CPU-time refers to the total computational

Mathematics 2021, 9, 160 13 of 16

time for all NMC simulations. Note that, for 1000 simulations, the exact solution (26)–(27)
requires 28.41 s to perform the simulations. Thus, Midpoint rule (R = 100, h = 0.1), Talbot
inverse and GL quadrature require less computational time than calculation by the exact
formula. As expected, the computational time is increasing with the number of simulations
linearly, but errors preserve the order in most cases.

Figure 5. Expectation and variance of the exact solution for the random hyperbolic partial differential equation (PDE) (25)
with a ∼ N (2, 0.25), b, c ∼ Beta(2, 5), performed using the Monte-Carlo method with NMC = 103 simulations.

Table 5. Comparison of various methods of numerical integration for the random hyperbolic PDE
(25) with a ∼ N (2, 0.25), b, c ∼ Beta(2, 5).

Method Error of Mean Error of Variance CPU-Time, s

NMC = 500
Midpoint rule 5.6048× 10−2 2.3034× 10−2 4.88
Talbot inverse 5.0744× 10−2 2.3032× 10−2 6.83
GL quadrature (3 nodes) 1.9009× 10−1 2.1436× 10−1 2.92

NMC = 1000
Midpoint rule 4.1520× 10−2 2.5102× 10−2 7.52
Talbot inverse 4.0345× 10−2 2.5102× 10−2 12.67
GL quadrature 1.9086× 10−1 2.1503× 10−1 5.64

NMC = 2000
Midpoint rule 3.7210× 10−2 1.2823× 10−2 16.88
Talbot inverse 3.1905× 10−2 1.2823× 10−2 24.86
GL quadrature 1.9001× 10−1 2.1443× 10−1 11.30

NMC = 4000
Midpoint rule 4.6382× 10−2 9.8022× 10−3 32.89
Talbot inverse 4.1078× 10−2 9.7971× 10−3 51.09
GL quadrature 1.8993× 10−1 2.1581× 10−1 24.31

5.4. Random PDE with Non-Constant Coefficients

To complete the study, a random variable coefficient problem is considered.

Mathematics 2021, 9, 160 14 of 16

Example 4. The vibration of the string in [0, L] is described by Equation (7), subject to the initial
conditions f0(x) = x(x− L) and f1(x) = 0; and boundary conditions g0(t) = g1(t) = 0. We set
up the parameters:

L = 0.5, T = 0.2, a(x) = ϕx + 1, ϕ ∼ N (9, 0.5), b(x) = −ex, c ∼ Beta(2, 5). (37)

Unlike the deterministic Example 2 with non-constant coefficients where FDM pro-
vides a reference analytical solution, reference values are not available here due to the
computational complexity that arises in the evaluation of the statistical moments of the
approximate stochastic process when time step advances [18]. A survival reference FDM
solution is taking the Monte Carlo method for an appropriate set of realizations. In this
case, the number of realizations is NMC = 103 and CPU-time is 16,212 s.

Figure 6 plots the numerical solution. The zero-variance at the boundaries is caused by
the boundary conditions. Similar plots are obtained for the considered methods. Thus, we
compare them in terms of the maximum relative error, see Table 6. As it is expected from
the previous examples, the most accurate solution is obtained by the midpoint rule and
Talbot inverse, although this advantage pays the price of additional computational cost.

Figure 6. Expectation and variance of the numerical solution for the random hyperbolic PDE (25) with ϕ ∼
N (9, 0.5), b(x) = −ex, c ∼ Beta(2, 5), performed by using the Monte-Carlo method with NMC = 103 simulations.

Table 6. Comparison of various methods of numerical integration for Example 4, NMC = 1000.

Method Error of Mean Error of Variance CPU-Time, s

Midpoint rule 3.8216× 10−2 2.2638× 10−2 65, 385.00
Talbot inverse 3.4976× 10−2 2.1375× 10−2 28, 965.54
GL quadrature (9 nodes) 1.8671× 10−1 2.5603× 10−2 7192.14

6. Conclusions

The solution of a random hyperbolic PDE problem is a challenging task that is de-
manded in many practical applications. Computing an expression of the approximating
stochastic process makes the computation of its statistical moments available. In this paper,
we propose a combination of the random Laplace transform with the numerical integration

Mathematics 2021, 9, 160 15 of 16

techniques for its inverse, and the Monte Carlo method for the evaluation of numerical
solution of the transformed problem at a particular required point.

The Monte Carlo simulations require a fast and efficient basis numerical algorithm
for solving deterministic hyperbolic PDE problem, for every fixed realization. FDM could
not be an option due to the high computational cost and memory requirements. In order
to avoid the numerical differentiation of the PDE, Laplace transform is applied, which
results in ODE equation. In some cases, as it has been shown in present paper, the analytical
solution of ODE is known; thus, we use numerical integration methods for inverse Laplace
transform. If the solution of ODE is not available, then numerical techniques for boundary
value problem have to be employed.

Several numerical integration methods have been considered: midpoint rule and
GL-quadrature for improper integrals. However, due to the oscillatory behaviour of the
integrand function GL quadrature with a small number of nodes shows comparatively poor
results, while the midpoint rule is comparable with Talbot’s Laplace inverse for random
hyperbolic PDEs. The proposed complex analytic-numerical approach is compared with
the classical explicit FDM scheme for the original random PDE problem.

Author Contributions: R.C., V.N.E. and L.J. contributed equally to this work. All authors have read
and agreed to the published version of the manuscript.

Funding: This research has been funded by the Spanish Ministerio de Economía, Industria y Com-
petitividad (MINECO), the Agencia Estatal de Investigación (AEI) and Fondo Europeo de Desarrollo
Regional (FEDER UE) grant MTM2017-89664-P.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: We state that data are available to the readers.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

FDM finite difference method
GL Gauss-Laguerre
m.s. mean square
ODE ordinary differential equation
PDE partial differential equation
r.v. random variable
s.p. stochastic process

References
1. Pettersson, M.P.; Iaccarino, G.; Nordström, J. Polynomial Chaos Methods for Hyperbolic Partial Differential Equations. Numerical

Techniques for Fluid Dynamics Problems in the Presence of Uncertainties; Springer International Publishing: Cham, Switzerland, 2015;
p. 214.

2. Yeh, K.C.; Liu, C.H. Wave Propagation in Random Media. In Theory of Ionospheric Waves; Academic Press: Cambridge, MA, USA,
1972; Volume 17, pp. 308–366. [CrossRef]

3. Gibson, W.C. The Method of Moments in Electromagnetics; Taylor & Francis Group: Abingdon, UK, 2008.
4. Vergara, R.C. Development of Geostatistical Models Using Stochastic Partial Differential Equations. Ph.D. Thesis, Université

Paris Sciences et Lettres, Paris, France, 2018.
5. Soong, T. Random Differential Equations in Science and Engineering, 1st ed.; Academic Press: Cambridge, MA, USA, 1973; Volume 103.
6. Kroese, D.P.; Taimre, T.; Botev, Z. Handbook of Monte Carlo Methods; John Wiley & Sons: New York, NY, USA, 2011.
7. Asmussen, S.; Glynn, P. Stochastic Simulation: Algorithms and Analysis; Springer Science & Business Media: Berlin/Heidelberg,

Germany, 2007; Volume 57.
8. Casabán, M.C.; Company, R.; Jódar, L. Non-gaussian quadrature integral transform solution of parabolic models with a finite

degree of randomness. Mathematics 2020, 8, 1112. [CrossRef]
9. Davies, B.; Martin, B. Numerical inversion of the laplace transform: A survey and comparison of methods. J. Comput. Phys. 1979,

33, 1–32. [CrossRef]

http://doi.org/10.1016/S0074-6142(08)60140-0
http://dx.doi.org/10.3390/math8071112
http://dx.doi.org/10.1016/0021-9991(79)90025-1

Mathematics 2021, 9, 160 16 of 16

10. Stehfest, H. Algorithm 368: Numerical Inversion of Laplace Transforms [D5]. Commun. ACM 1970, 13, 47–49. [CrossRef]
11. Talbot, A. The Accurate Numerical Inversion of Laplace Transforms. IMA J. Appl. Math. 1979, 23, 97–120.

[CrossRef]
12. Defreitas, C.L.; Kane, S.J. The noise handling properties of the Talbot algorithm for numerically inverting the Laplace transform.

J. Algorithms Comput. Technol. 2018, 13, 1748301818797069. [CrossRef]
13. Iserles, A. On the numerical quadrature of highly-oscillating integrals I: Fourier transforms. IMA J. Numer. Anal. 2004, 24, 365–391.

[CrossRef]
14. Davis, P. J. Methods of Numerical Integration; Dover Publications: Mineola, NY, USA, 2007; p. 612.
15. Casabán, M.C.; Company, R.; Egorova, V.N.; Jódar, L. Integral transform solution of random coupled parabolic partial differential

models. Math. Methods Appl. Sci. 2020, 43, 8223–8236. [CrossRef]
16. Casabán, M.C.; Cortés, J.C.; Jódar, L. A random Laplace transform method for solving random mixed parabolic differential

problems. Appl. Math. Comput. 2015, 259, 654–667. [CrossRef]
17. Arnold, L. Stochastic Differential Equations Theory and Applications; John Wiley: Hoboken, NJ, USA, 1974.
18. Casabán, M.C.; Company, R.; Jódar, L. Numerical Integral Transform Methods for Random Hyperbolic Models with a Finite

Degree of Randomness. Mathematics 2019, 7, 853. [CrossRef]
19. Iserles, A.; Nørsett, S.P. On Quadrature Methods for Highly Oscillatory Integrals and Their Implementation. BIT Numer. Math.

2004, 44, 755–772. [CrossRef]
20. Shao, T.S.; Frank, T.C.; Chen, R.M. Tables of zeros and Gaussian weights of certain associated Laguerre polynomials and the

related generalized Hermite polynomials. Math. Comput. 1964, 18, 598–616.
[CrossRef]

21. Conte, D.; Ixaru, L.G.; Paternoster, B.; Santomauro, G. Exponentially-fitted Gauss-Laguerre quadrature rule for integrals over an
unbounded interval. J. Comput. Appl. Math. 2014, 255, 725–736. [CrossRef]

22. Abate, J.; Whitt, W. A Unified Framework for Numerically Inverting Laplace Transforms. INFORMS J. Comput. 2006, 18, 408–421.
[CrossRef]

23. Polyanin, A.D.; Nazaikinskii, V.E. Handbook of Linear Partial Differential Equations for Engineers and Scientists, 2nd ed.; CRC Press:
Boca Raton, FL, USA, 2016; p. 1643.

24. Shampine, L. Vectorized adaptive quadrature in MATLAB. J. Comput. Appl. Math. 2008, 211, 131–140. [CrossRef]

http://dx.doi.org/10.1145/361953.361969
http://dx.doi.org/10.1093/imamat/23.1.97
http://dx.doi.org/10.1177/1748301818797069
http://dx.doi.org/10.1093/imanum/24.3.365
http://dx.doi.org/10.1002/mma.6492
http://dx.doi.org/10.1016/j.amc.2015.02.091
http://dx.doi.org/10.3390/math7090853
http://dx.doi.org/10.1007/s10543-004-5243-3
http://dx.doi.org/10.1090/S0025-5718-1964-0166397-1
http://dx.doi.org/10.1016/j.cam.2013.06.040
http://dx.doi.org/10.1287/ijoc.1050.0137
http://dx.doi.org/10.1016/j.cam.2006.11.021

	Introduction
	Preliminaries and Integral Transform for Random Hyperbolic PDE
	Numerical Integration Methods
	Midpoint Quadrature Rule
	Gauss-Laguerre Quadrature
	Exponentially-Fitted Gauss-Laguerre Quadrature
	Talbot Inverse

	Monte Carlo Method for Random Hyperbolic PDE
	Numerical Results
	Deterministic PDE Problem with Constant Coefficients
	Deterministic PDE with Non-Constant Coefficients
	Random PDE with Constant Coefficients
	Random PDE with Non-Constant Coefficients

	Conclusions
	References

