1,093 research outputs found

    Iron fluorescence from within the innermost stable orbit of black hole accretion disks

    Get PDF
    The fluorescent iron Ka line is a powerful observational probe of the inner regions of black holes accretion disks. Previous studies have assumed that only material outside the radius of marginal stability can contribute to the observed line emission. Here, we show that fluorescence by material inside the radius of marginal stability, which is in the process of spiralling towards the event horizon, can have a observable influence on the iron line profile and equivalent width. For concreteness, we consider the case of a geometrically thin accretion disk, around a Schwarzschild black hole, in which fluorescence is excited by an X-ray source placed at some height above the disk and on the axis of the disk. Fully relativistic line profiles are presented for various source heights and efficiencies. It is found that the extra line flux generally emerges in the extreme red wing of the iron line, due to the large gravitational redshift experienced by photons from the region within the radius of marginal stability. We apply our models to the variable iron line seen in the ASCA spectrum of the Seyfert nucleus MCG-6-30-15. It is found that the change in the line profile, equivalent width, and continuum normalization, can be well explained as being due to a change in the height of the source above the disk. We discuss the implications of these results for distinguishing rapidly-rotating black holes from slowly rotating holes using iron line diagnostics.Comment: 20 pages, LaTeX. Accepted for publication in Astrophysical Journal. Figures 3 to 7 replaced with corrected versions (previous figures affected by calculational error). Some changes in the best fitting parameter

    A systematic look at the Very High and Low/Hard state of GX 339-4: Constraining the black hole spin with a new reflection model

    Full text link
    We present a systematic study of GX 339-4 in both its very high and low hard states from simultaneous observations made with XMM-Newton and RXTE in 2002 and 2004. The X-ray spectra of both these extreme states exhibit strong reflection signatures, with a broad, skewed Fe-Kalpha line clearly visible above the continuum. Using a newly developed, self-consistent reflection model which implicitly includes the blackbody radiation of the disc as well as the effect of Comptonisation, blurred with a relativistic line function, we were able to infer the spin parameter of GX 339-4 to be 0.935 +/- 0.01 (statistical) +/- 0.01 (systematic) at 90 per cent confidence. We find that both states are consistent with an ionised thin accretion disc extending to the innermost stable circular orbit around the rapidly spinning black hole.Comment: 10 pages, 10 figures, accepted for publication in MNRAS 17/04/0

    Broad iron lines in Active Galactic Nuclei

    Get PDF
    An intrinsically narrow line emitted by an accretion disk around a black hole appears broadened and skewed as a result of the Doppler effect and gravitational redshift. The fluorescent iron line in the X-ray band at 6.4-6.9keV is the strongest such line and is seen in the X-ray spectrum of many active galactic nuclei and, in particular, Seyfert galaxies. It is an important diagnostic with which to study the geometry and other properties of the accretion flow very close to the central black hole. The broad iron line indicates the presence of a standard thin accretion disk in those objects, often seen at low inclination. The broad iron line has opened up strong gravitational effects around black holes to observational study with wide-reaching consequences for both astrophysics and physics.Comment: 26 pages. Invited review, accepted for publication in PAS

    Constraining the Spin of the Black Hole in Fairall 9 with Suzaku

    Full text link
    We report on the results of spectral fits made to data obtained from a 168 ksec Suzaku observation of the Seyfert-1 galaxy Fairall 9. The source is clearly detected out to 30 keV. The observed spectrum is fairly simple; it is well-described by a power-law with a soft excess and disk reflection. A broad iron line is detected, and easily separated from distinct narrow components owing to the resolution of the CCDs in the X-ray Imaging Spectrometer (XIS). The broad line is revealed to be asymmetric, consistent with a disk origin. We fit the XIS and Hard X-ray Detector (HXD) spectra with relativistically-blurred disk reflection models. With the assumption that the inner disk extends to the innermost stable circular orbit, the best-fit model implies a black hole spin parameter of a = 0.60(7) and excludes extremal values at a high level of confidence. We discuss this result in the context of Seyfert observations and models of the cosmic distribution of black hole spin.Comment: Accepted for publication in Ap

    On the determination of the spin of the black hole in Cyg X-1 from X-ray reflection spectra

    Get PDF
    The spin of Cygnus X-1 is measured by fitting reflection models to Suzaku data covering the energy band 0.9-400 keV. The inner radius of the accretion disc is found to lie within 2 gravitational radii (r_g=GM/c^2) and a value for the dimensionless black hole spin is obtained of 0.97^{+0.014}_{-0.02}. This agrees with recent measurements using the continuum fitting method by Gou et al. and of the broad iron line by Duro et al. The disc inclination is measured at 23.7^{+6.7}_{-5.4} deg, which is consistent with the recent optical measurement of the binary system inclination by Orosz et al of 27+/-0.8 deg. We pay special attention to the emissivity profile caused by irradiation of the inner disc by the hard power-law source. The X-ray observations and simulations show that the index q of that profile deviates from the commonly used, Newtonian, value of 3 within 3r_g, steepening considerably within 2r_g, as expected in the strong gravity regime.Comment: 7 pages, 10 figures, MNRAS in pres

    Line Emission from an Accretion Disk around a Black hole: Effects of Disk Structure

    Get PDF
    The observed iron K-alpha fluorescence lines in Seyfert-1 galaxies provide strong evidence for an accretion disk near a supermassive black hole as a source of the line emission. These lines serve as powerful probes for examining the structure of inner regions of accretion disks. Previous studies of line emission have considered geometrically thin disks only, where the gas moves along geodesics in the equatorial plane of a black hole. Here we extend this work to consider effects on line profiles from finite disk thickness, radial accretion flow and turbulence. We adopt the Novikov and Thorne (1973) solution, and find that within this framework, turbulent broadening is the dominant new effect. The most prominent change in the skewed, double-horned line profiles is a substantial reduction in the maximum flux at both red and blue peaks. The effect is most pronounced when the inclination angle is large, and when the accretion rate is high. Thus, the effects discussed here may be important for future detailed modeling of high quality observational data.Comment: 21 pages including 8 figures; LaTeX; ApJ format; accepted by ApJ; short results of this paper appeared before as a conference proceedings (astro-ph/9711214

    Extreme Warm Absorber variability in the Seyfert Galaxy Mrk 704

    Full text link
    In about half of Seyfert galaxies, the X-ray emission is absorbed by an optically thin, ionized medium, the so-called "Warm Absorber", whose origin and location is still a matter of debate. The aims of this paper is to put more constraints on the warm absorber by studying its variability. We analyzed the X-ray spectra of a Seyfert 1 galaxy, Mrk 704, which was observed twice, three years apart, by XMM-Newton. The spectra were well fitted with a two zones absorber, possibly covering only partially the source. The parameters of the absorbing matter - column density, ionization state, covering factor - changed significantly between the two observations. Possible explanations for the more ionized absorber are a torus wind (the source is a polar scattering one) or, in the partial covering scenario, an accretion disk wind. The less ionized absorber may be composed of orbiting clouds in the surroundings of the nucleus, similarly to what already found in other sources, most notably NGC 1365.Comment: 10 pages. Accepted for publication in Astronomy & Astrophysic

    The broad iron Kalpha line of Cygnus X-1 as seen by XMM-Newton in the EPIC-pn modified timing mode

    Full text link
    We present the analysis of the broadened, flourescent iron Kalpha line in simultaneous XMM-Newton and RXTE data from the black hole Cygnus X-1. The XMM-Newton data were taken in a modified version of the timing mode of the EPIC-pn camera. In this mode the lower energy threshold of the instrument is increased to 2.8 keV to avoid telemetry drop outs due to the brightness of the source, while at the same time preserving the signal-to-noise ratio in the Fe Kalpha band. We find that the best-fit spectrum consists of the sum of an exponentially cut off power-law and relativistically smeared, ionized reflection. The shape of the broadened Fe Kalpha feature is due to strong Compton broadening combined with relativistic broadening. Assuming a standard, thin accretion disk, the black hole is close to rotating maximally.Comment: Astron. Astrophys., in pres

    Simultaneous EUVE/ASCA/RXTE Observations of NGC 5548

    Get PDF
    We present simultaneous observations by EUVE, ASCA, and RXTE of the type~1 Seyfert galaxy NGC 5548. These data indicate that variations in the EUV emission (at ∌0.2\sim 0.2 keV) appear to lead similar modulations in higher energy (\ga 1 keV) X-rays by ∌\sim10--30 ks. This is contrary to popular models which attribute the correlated variability of the EUV, UV and optical emission in type~1 Seyferts to reprocessing of higher energy radiation. This behavior instead suggests that the variability of the optical through EUV emission is an important driver for the variability of the harder X-rays which are likely produced by thermal Comptonization. We also investigate the spectral characteristics of the fluorescent iron Kα\alpha line and Compton reflection emission. In contrast to prior measurements of these spectral features, we find that the iron Kα\alpha line has a relatively small equivalent width (WKα∌100W_{K\alpha} \sim 100 eV) and that the reflection component is consistent with a covering factor which is significantly less than unity (Ω/2π∌0.4\Omega/2\pi \sim 0.4--0.5). Notably, although the 2--10 keV X-ray flux varies by ∌±25\sim \pm 25% and the derived reflection fraction appears to be constant throughout our observations, the flux in the Fe~Kα\alpha line is also constant. This behavior is difficult to reconcile in the context of standard Compton reflection models.Comment: 13 pages, 6 figures, LaTeX, uses emulateapj.sty and apjfonts.sty, submitted to Ap
    • 

    corecore