1,627 research outputs found

    Online Professional Learning Communities as Sites for Learning and Connection: Teacher Agency and the Rhizome

    Get PDF
    This paper responds to the themes of learning and connected communities and technology enhanced learning. It explores the relationship between teacher agency and online Professional Learning Communities (PLCs) – specifically the use of social media tools among trainee teachers. Using a discourse analysis methodology we present the early experiences and reflections of the curriculum development team and trainee teachers as we seek to integrate social media, both formally and informally into a distance-learning environment, merging the best practices of face-to-face and blended learning. The site of learning is a distance learning Postgraduate Certificate in Education (PGCE) provided by a large University in the North of England. This Master’s level course enhances the practice-based development of trainee teachers (leading to Qualified Teacher Status). It provides opportunities for trainee teachers to create and share knowledge, and to connect with educational theory, evidence informed research and pedagogical content knowledge (PCK). Originally established as face-to-face and blended provision, the curriculum development team has moved towards distance learning, and two cohorts are currently enrolled, constituted of 75 students. The University works in partnership with School Based Initial Teacher Training providers (SCITTs). The curriculum architecture of this PGCE is premised upon notions of Heutagogy, Rhizomatic Learning and Instructional Design. It embeds Master’s level attributes, promoting self-determined learning, high levels of autonomy, epistemic curiosity and a willingness to engage and participate. The affordances of social media tools supports the creation of learner-generated content, and emerging communities of practice, facilitated and moderated by several agents, including the curriculum team, the trainee teachers, and their mentors. We reflect on our ongoing research into participation in constructed and facilitated Professional Learning Communities. This paper contributes to debates surrounding heutagogy, PLCs, instructional design, and non-participation. It will be of interest to academics and practitioners seeking to debate social media in education and curriculum development, whether for blended, online or distance learning

    Smart Metering Enables Effective Demand Management Design

    Full text link
    The water demand and water use practices of each community are different. Designing cost-effective demand management programs requires investigating and responding directly to the unique water issues and opportunities of each community (Turner et al., 2010). As presented in this paper, a `mixed method baseline analysis' has proven to be valuable in developing a demand management program tailored to the distinctive community context. A mixed method baseline analysis is comprised of two interlinked components: (i) quantitative smart meter data analysis to create a detailed understanding of the water demand pro¬file; and (ii) qualitative social research to understand the social, cultural and institutional influences that drive existing water patterns. This paper shares the mixed method baseline analysis and resulting implications for a demand management program implemented in the remote Indigenous community of Gunbalanya, Northern Territory, in 2013

    The role of megacontinents in the supercontinent cycle

    Get PDF
    Supercontinent Pangea was preceded by the formation of Gondwana, a ?megacontinent? about half the size of Pangea. There is much debate, however, over what role the assembly of the precursor megacontinent played in the Pangean supercontinent cycle. Here we demonstrate that the past three cycles of supercontinent amalgamation were each preceded by ?200 m.y. by the assembly of a megacontinent akin to Gondwana, and that the building of a megacontinent is a geodynamically important precursor to supercontinent amalgamation. The recent assembly of Eurasia is considered as a fourth megacontinent associated with future supercontinent Amasia. We use constraints from seismology of the deep mantle for Eurasia and paleogeography for Gondwana to develop a geodynamic model for megacontinent assembly and subsequent supercontinent amalgamation. As a supercontinent breaks up, a megacontinent assembles along the subduction girdle that encircled it, at a specific location where the downwelling is most intense. The megacontinent then migrates along the girdle where it collides with other continents to form a supercontinent. The geometry of this model is consistent with the kinematic transitions from Rodinia to Gondwana to Pangea.Peer reviewe

    Silviculture and the red-cockaded woodpecker: Where do we go from here?

    Get PDF
    Recent standards and guidelines for the protection and management of red-cockaded woodpecker habitat within 3/4 mi of colony sites, and also thinning within colonies to reduce basal area and midstory will have a significant effect on National Forest lands. The relation of these thinnings to forest pest management will be examined as well as the area of forest involved. Current fire regulations in relation to prescribed burns and potential fuel buildup will be examined. Plans for research, including disturbances, hazard, and risk rating for southern pine beetle and landscape changes will be presented

    Archean geodynamics : Ephemeral supercontinents or long-lived supercratons

    Get PDF
    Many Archean cratons exhibit Paleoproterozoic rifted margins, implying they were pieces of some ancestral landmass(es). The idea that such an ancient continental assembly represents an Archean supercontinent has been proposed but remains to be justified. Starkly contrasting geological records between different clans of cratons have inspired an alternative hypothesis where cratons were clustered in multiple, separate "supercratons." A new ca. 2.62 Ga paleomagnetic pole from the Yilgarn craton of Australia is compatible with either two successive but ephemeral supercontinents or two long-lived supercratons across the Archean-Proterozoic transition. Neither interpretation supports the existence of a single, long-lived supercontinent, suggesting that Archean geodynamics were fundamentally different from subsequent times (Proterozoic to present), which were influenced largely by supercontinent cycles.Peer reviewe

    High-pressure investigations of CaTiO3 up to 60 GPa using X-ray diffraction and Raman spectroscopy

    Full text link
    In this work, we investigate calcium titanate (CaTiO3 - CTO) using X-ray diffraction and Raman spectroscopy up to 60 and 55 GPa respectively. Both experiments show that the orthorhombic Pnma structure remains stable up to the highest pressures measured, in contradiction to ab-initio predictions. A fit of the compression data with a second-order Birch-Murnaghan equation of state yields a bulk modulus K0 of 181.0(6) GPa. The orthorhombic distortion is found to increase slightly with pressure, in agreement with previous experiments at lower pressures and the general rules for the evolution of perovskites under pressure. High-pressure polarized Raman spectra also enable us to clarify the Raman mode assignment of CTO and identify the modes corresponding to rigid rotation of the octahedra, A-cation shifts and Ti-O bond stretching. The Raman signature is then discussed in terms of compression mechanisms.Comment: 11 pages, 6 figures, 4 table

    On the enigmatic mid-Proterozoic : Single-lid versus plate tectonics

    Get PDF
    The mid-Proterozoic (ca. 1850-850 Ma) is a peculiar period of Earth history in many respects: ophiolites and passive margins of this age are rare, whereas anorthosite and A-type granite suites are abundant; metamorphic rocks typically record high thermobaric (temperature/pressure) ratios, whereas ultrahigh pressure (UHP) rocks are rare; and the abundance of economic mineral deposits features rare porphyry Cu-Au and abundant Ni-Cu and Fe-oxide Cu-Ag (IOCG) deposit types. These collective observations have been used to propose that a stagnant-lid, or single-lid, tectonic regime operated at this time, between periods of plate tectonics in the Paleoproterozoic and Neoproterozoic. In our reappraisal of the mid -Proterozoic geological record, we not only assess the viability of the single-lid hypothesis for each line of evidence, but also that of the plate tectonic alternative. We find that evidence for the single-lid hypothesis is equivocal in all cases, whereas for plate tectonics the evidence is equivocal or supporting. We therefore find no reason to abandon a plate tectonic model for the mid-Proterozoic time period. Instead, we propose that the peculiarities of this enigmatic interval can be reconciled through the combination of two processes working in tandem: secular mantle cooling and the exceptionally long tenure and incomplete breakup of Earth's first supercontinent, where both of these phenomena had a dramatic effect on lithospheric behaviour and its resulting imprint in the geological record. (c) 2022 British Geological Survey (c) UKRI 2022. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).Peer reviewe

    Characterising seasonal influenza epidemiology using primary care surveillance data

    Get PDF
    Understanding the epidemiology of seasonal influenza is critical for healthcare resource allocation and early detection of anomalous seasons. It can be challenging to obtain highquality data of influenza cases specifically, as clinical presentations with influenza-like symptoms may instead be cases of one of a number of alternate respiratory viruses. We use a new dataset of confirmed influenza virological data from 2011-2016, along with highquality denominators informing a hierarchical observation process, to model seasonal influenza dynamics in New South Wales, Australia. We use approximate Bayesian computation to estimate parameters in a climate-driven stochastic epidemic model, including the basic reproduction number R0, the proportion of the population susceptible to the circulating strain at the beginning of the season, and the probability an infected individual seeks treatment. We conclude that R0 and initial population susceptibility were strongly related, emphasising the challenges of identifying these parameters. Relatively high R0 values alongside low initial population susceptibility were among the results most consistent with these data. Our results reinforce the importance of distinguishing between R0 and the effective reproduction number (Re) in modelling studies.Robert C. Cope, Joshua V. Ross, Monique Chilver, Nigel P. Stocks, Lewis Mitchel

    A Late Cretaceous true polar wander oscillation

    Get PDF
    True polar wander (TPW), or planetary reorientation, is well documented for other planets and moons and for Earth at present day with satellites, but testing its prevalence in Earth’s past is complicated by simultaneous motions due to plate tectonics. Debate has surrounded the existence of Late Cretaceous TPW ca. 84 million years ago (Ma). Classic palaeomagnetic data from the Scaglia Rossa limestone of Italy are the primary argument against the existence of ca. 84 Ma TPW. Here we present a new high-resolution palaeomagnetic record from two overlapping stratigraphic sections in Italy that provides evidence for a ~12° TPW oscillation from 86 to 78 Ma. This observation represents the most recent large-scale TPW documented and challenges the notion that the spin axis has been largely stable over the past 100 million years
    • …
    corecore