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ABSTRACT
Supercontinent Pangea was preceded by the formation of Gondwana, a “megacontinent” 

about half the size of Pangea. There is much debate, however, over what role the assembly 
of the precursor megacontinent played in the Pangean supercontinent cycle. Here we dem-
onstrate that the past three cycles of supercontinent amalgamation were each preceded by 
∼200 m.y. by the assembly of a megacontinent akin to Gondwana, and that the building of a 
megacontinent is a geodynamically important precursor to supercontinent amalgamation. 
The recent assembly of Eurasia is considered as a fourth megacontinent associated with 
future supercontinent Amasia. We use constraints from seismology of the deep mantle for 
Eurasia and paleogeography for Gondwana to develop a geodynamic model for megacontinent 
assembly and subsequent supercontinent amalgamation. As a supercontinent breaks up, a 
megacontinent assembles along the subduction girdle that encircled it, at a specific location 
where the downwelling is most intense. The megacontinent then migrates along the girdle 
where it collides with other continents to form a supercontinent. The geometry of this model 
is consistent with the kinematic transitions from Rodinia to Gondwana to Pangea.

INTRODUCTION
The supercontinent cycle of continental as-

sembly and breakup has been linked to global-
scale orogenesis, mantle convection patterns, 
and the evolution of climate, the environment, 
and life (Nance et al., 2014). Three superconti-
nents are proposed to have formed since 2 Ga: 
Pangea, Rodinia, and Columbia (Evans, 2013). 
Today, Earth is in between supercontinent con-
figurations (Pangea in the past, Amasia in the fu-
ture) (Mitchell et al., 2012), with supercontinent 
assembly beginning (e.g., Eurasia) while super-
continent breakup is ongoing (e.g., East Africa). 
Gondwana was a major and early-forming part 
of supercontinent Pangea (Fig. 1), but its role in 
the supercontinent cycle remains controversial. 
Some researchers emphasize the importance of 
large Gondwana, even referring to it as a super-
continent (Spencer et al., 2013), whereas others 
interpret Gondwana as only part of the larger 
Pangea (Doucet et al., 2019).

We present the concept of a “megacontinent” 
as a geodynamic precursor of supercontinent 
formation. If continents are rifted pieces of a su-

percontinent formed during the breakup phase, 
a megacontinent is viewed as an assembly of 
multiple continents geodynamically linked to 
the incipient amalgamation phase of the next 
supercontinent. The megacontinent becomes a 
large subset of the next supercontinent, which 
results from the amalgamation of a majority 
of continents into one contiguous, long-lived 
landmass (Evans, 2013). The new term fits in 
the continental hierarchy: supercontinent (e.g., 
Pangea) > megacontinent (e.g., Gondwana) > 
continent (e.g., Africa) > microcontinent (e.g., 
Japan). We provide evidence for the assembly of 
megacontinents as precursors to every supercon-
tinent through time. We also offer a conceptual 
framework for the origin of megacontinents that 
refines models of the supercontinent cycle.

MEGACONTINENTS OF EARTH 
HISTORY
Eurasia in Amasia

Eurasia is presently Earth’s largest landmass 
(Figs. 2 and 3A), containing Siberia, the North 
China craton, the South China craton, the Tarim 
craton, India, and many small blocks bounded 
by multiple orogenic systems that collided with 

Baltica (and subsequently outboard additions) 
(Wan et al., 2019). Assembly of Eurasia started 
with the central Asian orogenic belt that weld-
ed Baltica and Siberia at ca. 250 Ma. This as-
sembly overlaps with the tenure and breakup of 
Pangea and represents an early assembly phase 
of the proposed future supercontinent Amasia 
(Mitchell et  al., 2012). Following Siberia’s 
assimilation into Pangea, accretion along the 
eastern margin of Siberia of continental blocks 
and terranes occurred between 200 and 100 Ma 
(Torsvik et al., 2012; Wan et al., 2019). Much 
of Eurasia represents the reassembly of rifted 
fragments of Gondwana since the Devonian. 
The sense of plate motion has been meridional, 
translating rifted pieces of Gondwana from the 
Southern Hemisphere to assemble in Eurasia in 
the Northern Hemisphere. With the presently 
rapid northward migration of Australia and its 
imminent collision with Eurasia, assembly of 
the megacontinent is likely ongoing.

Gondwana in Pangea
Gondwana assembled in two sectors: West 

Gondwana, with the Brasiliano and Pan-
African orogens; and East Gondwana, with 
the East African and Kuunga orogens. The 
amalgamation of Gondwana was initiated as 
early as ca. 750 Ma and was fully complete 
by ca. 520 Ma (Collins and Pisarevsky, 2005). 
Gondwana formed the southern portion of su-
percontinent Pangea (Fig. 1). The collision of 
Gondwana and Laurussia (Laurentia-Baltica-
Avalonia) to finally form Pangea at ca. 350 Ma 
(Torsvik et al., 2012) thus implies that the as-
sembly of megacontinent Gondwana predates 
amalgamation of supercontinent Pangea by 
∼170 m.y. (Fig. 2).

Umkondia in Rodinia
The Grenville orogen between eastern Lau-

rentia and, most likely, Amazonia and other *E-mail: ross.mitchell@mail.iggcas.ac.cn
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continents did not occur until ca. 1 Ga (Spen-
cer et al., 2013), and Neoproterozoic supercon-
tinent Rodinia was not finally assembled until 
ca. 900 Ma (Merdith et al., 2017). However, 
∼100 m.y. before the Grenville collision and 
∼200 m.y. before Rodinia amalgamation, sev-
eral continents, including Amazonia, were part 
of a megacontinent “Umkondia”, including the 
Congo–São Francisco, India, Kalahari, and West 
Africa cratons, that assembled before 1.1 Ga 
(Spencer et al., 2017; Choudhary et al., 2019). 
Thus, assembly of the Umkondia megacontinent 
began while the breakup of the previous super-
continent was ongoing (Evans and Mitchell, 
2011). The case for Umkondia as a pre-Rodini-

an megacontinent is based on paleomagnetism, 
geochemistry, and geochronology of a coeval 
ca. 1.1 Ga large igneous province (Choudhary 
et al., 2019).

Nuna in Columbia
The existence of a Paleoproterozoic–

Mesoproterozoic supercontinent Columbia 
(a.k.a. Nuna) has been proposed (Zhao et al., 
2002; Kirscher et al., 2020). There is debate 
over its name, and legitimate cases for prece-
dence can be made for either option (Meert, 
2012; Evans, 2013). In a possible resolution to 
this semantic standoff, we refer to the supercon-
tinent as Columbia and to its precursor megac-

ontinent as Nuna because (1) “Columbia” was 
the name used for the first attempts at global-
scale supercontinent reconstruction (Zhao et al., 
2002), and (2) Hoffman (1997) used the term 
“Nuna” (an Inuit word for the lands bordering 
the northern oceans and seas of North Ameri-
ca) to refer to the larger continent of Laurentia, 
which was suspected to be contiguous with Bal-
tica. Peripheral constituents of supercontinent 
Columbia such as Australia were sutured by 
ca. 1.6 Ga, heralding final supercontinent amal-
gamation (Kirscher et al., 2020). The internal 
orogens of Laurentia indicate the assembly of 
the Nuna megacontinent by ca. 1.8 Ga via the 
Trans-Hudson orogen (Hoffman, 1997) and, 

Figure 2.  Megacontinents through time. (Top) Timeline of megacontinents and associated supercontinents. (Bottom) Megacontinent 
reconstructions at age of final assembly (Eurasia at present day). EQ—equator.

Figure 1.  Paleogeo-
graphic reconstruction 
of Pangea before breakup, 
showing Gondwana 
megacontinent (orange) 
in Pangea supercontinent 
(blue)(Mitchell et al., 2012; 
Mitchell et al., 2020).
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based on paleomagnetism, Nuna also included 
Baltica and Siberia with Laurentia (Evans and 
Mitchell, 2011). Nuna was comparable in size 
to younger megacontinents, and its assembly 
predated that of supercontinent Columbia by 
∼200 m.y. (Fig. 2).

GEODYNAMIC SIGNIFICANCE OF 
MEGACONTINENTS

The existence of a megacontinent as a precur-
sor to each supercontinent cycle can be identified 
through time, with the assembly of each megac-
ontinent consistently predating amalgamation of 

its supercontinent by ∼200 m.y. (Fig. 2). During 
this time interval, a large ocean closed, imply-
ing a large initial spatial separation between the 
megacontinent and the supercontinent. Megac-
ontinent Gondwana, for example, assembled at 
high southerly latitudes as evidenced by glacial 
deposits and paleomagnetic data (Caputo and 
Crowell, 1985), whereas the amalgamation of 
supercontinent Pangea straddled the equator af-
ter the closure of the Rheic and Iapetus Oceans 
(Torsvik et al., 2012). We calculated megacon-
tinent sizes using the areas of continent and/or 
craton geographic shape files (Pisarevsky et al., 
2014; Torsvik et al., 2014) with GPlates soft-
ware (https://www.gplates.org/), where Nuna, 
Umkondia, Gondwana, and Eurasia (includ-
ing Australia in the future) represent ∼6%, 5%, 
16%, and 12% of Earth’s surface, respectively 
(Fig. 2). Laurussia covers only <5% of Earth’s 
surface, i.e., less than one-third the size of Gond-
wana, implying that each supercontinent likely 
has only one bona fide megacontinent. With 
Pangea covering ∼23% of Earth’s surface, a 
megacontinent like Gondwana, therefore, rep-
resents more than half (∼70%) the size of its 
supercontinent.

There is a feedback between mantle convec-
tion and supercontinent formation. On one hand, 
continents are modeled to drift “downhill” to-
ward geoidal lows, thus forming a superconti-
nent over a mantle downwelling (Gurnis, 1988; 
Zhong et al., 2007). On the other hand, there 
are several ways in which a supercontinent may 
promote mantle upwelling beneath it, including, 
but not limited to (1) thermal insulation due to 
the inefficiency of heat transfer of thick, stagnant 
continental lithosphere (Lenardic et al., 2011); 
(2) cold slab material no longer cooling the man-
tle beneath the supercontinent (Coltice et al., 
2007; Lenardic et al., 2011); and (3) reorgani-
zation of mantle convective flow into a circum-
supercontinent girdle of downwelling (e.g., the 
modern subduction “ring of fire”) and coaxial 
supercontinent–superocean upwellings (Zhong 
et al., 2007; Li and Zhong, 2009). The two an-
tipodal upwellings are each linked to equatorial 
large low-shear-velocity provinces (LLSVPs; 
the African and the Pacific) in the lower mantle 
and are a testament to the dominance of degree-2 
mantle flow (two antipodal upwellings bisected 
by the girdle of downwelling) on modern Earth 
since at least 300 m.y. ago (Zhong et al., 2007; 
Torsvik et al., 2012). The shape and location 
of the African LLSVP closely correlates with 
the location of supercontinent Pangea before 
breakup (Mitchell et al., 2020) (Fig. 3A). It 
has been hypothesized (Li and Zhong, 2009) 
that the supercontinent cycle alternates be-
tween the dominance of degree-2 mantle flow 
during supercontinent tenure and breakup and 
degree-1 flow during supercontinent formation 
(one upwelling and one downwelling) (Fig. 3B). 
Patterns in global plate motions that are coupled 

B

A

C

Figure 3.  Megacontinent-supercontinent geodynamics. (A) Pangea before breakup, and an 
enlarging Eurasia since then. Seismic shear-wave velocity is from the s5mean model of 
Doubrovine et al. (2016) at 2800 km depth, where velocities are: red—slow; blue—fast; white—
average. Large low-shear-velocity provinces (LLSVPs) of mantle upwelling and bisecting 
degree-2 downwelling girdle are labeled. (B) Two dominant modes (degree-1 and degree-2) of 
long-wavelength mantle convection (Zhong et al., 2007). Core is red, mantle downwelling is 
blue, and upwelling is yellow. When both flow modes are subequal (Conrad et al., 2013), their 
potential geometric superposition (right) allows a megacontinent to form above the degree-1 
locus of downwelling along the degree-2 downwelling girdle. (C) How a megacontinent turns 
into a supercontinent. Focused degree-1 mantle downwelling occurs along the degree-2 girdle.
Step 1 is formation of a megacontinent over the locus of downwelling (small arrows), and step 
2 is formation of a supercontinent by convergence of continents (large bold arrows) to/along 
the downwelling girdle. L—Laurentia; B—Baltica; G—Gondwana.
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to mantle flow through basal tractions indicate 
the predominance of degree-1 flow both before 
and after degree-2 flow predominated between 
240 and 60 Ma (Conrad et al., 2013).

Although either degree-1 or degree-2 flow 
may predominate at any given time, both har-
monics of mantle convection occur simultane-
ously (Fig. 3B). For example, where degree-1 
and degree-2 flow planforms interfere, this su-
perposition would focus a zone of most intense 
downwelling at the degree-1 locus of down-
welling along the degree-2 girdle (Fig. 3C). 
In our model, the location of most intense 
downwelling along the girdle occurs where 
subduction is located at a 90° angle from the 
pole of rotation (hence, the greatest rate of 
subduction) of the lower (moving) plate. Such 
a situation occurs today as continents aggre-
gate over mantle downwelling in the north-
ern Indian Ocean and in south-central Asia 
(Replumaz et al., 2004; Conrad et al., 2013) 
along the degree-2 Pacific girdle. The forma-
tion of Eurasia as a megacontinent is located 
where mantle downwelling is most pronounced 
along the degree-2 girdle (Figs. 3A and 3B). 
The 47 Ma and present-day Euler poles for In-
dia and Australia, respectively, are both located 
in the Pacific LLSVP and 113° and 73° away 
from their respective continents (Fig. S1 in the 
Supplemental Material1), yielding an average 
of 93° that indicates meridional subduction 
along the degree-2 downwelling girdle. Thus, 
zones of most intense downwelling along the 
degree-2 girdle may reflect variable rates of 
subduction, as expressed by distance from the 
Euler pole of rotation in the subducting plate. 
In this scenario, the megacontinent (i.e., Gond-
wana) would assemble over a concentrated lo-
cus of downwelling along the girdle ∼90° from 
the pole of rotation (Fig. 3C). As plate spin 
is negligible (Olson and Bercovici, 1991), all 
continents at a high angle to the pole of rotation 
would migrate toward the girdle with no net 
relative rotation between them, and the margins 
that collide would be the same ones that faced 
one another when they drifted apart, consistent 
with the Wilson cycle model (Wilson, 1966; 
Replumaz et al., 2004) and the observation of 
“strange attractors” (Meert, 2014).

As the megacontinent (Gondwana) forms, 
however, the intensity of local downwelling 
progressively diminishes due to return flow and 
subcontinental insulation (Coltice et al., 2007; 
Zhong et al., 2007), thus generating plumes 
along its margins, and potentially slab rollback 

(both observed in early Paleozoic Gondwana). 
The downwelling beneath the megacontinent 
diminishes so that it becomes less intense than 
elsewhere along the girdle. However, because it 
remains trapped along the girdle by the flanking 
LLSVPs, the megacontinent migrates along the 
girdle until it collides with the other continents 
that have finally migrated there (i.e., Laurus-
sia), thus culminating in Pangea (Fig. 3C). The 
largely longitudinal motion of equatorial Lau-
russia throughout Paleozoic time that closed 
the Rheic and Iapetus Oceans was achieved 
by a subpolar Euler pole of rotation (Mitchell 
et al., 2012; Torsvik et al., 2012), implying 
that the next intense downwelling was located 
90° from, and along the same great circle as, 
the downwelling associated with Gondwana 
assembly. Mantle convective modeling may 
be able to explore whether such an orthogo-
nal migration of downwelling loci along the 
girdle is coincidental or a theoretical expecta-
tion. Given our hypothesized relationship of a 
megacontinent with the pole of rotation, having 
more than one megacontinent per cycle is un-
likely. When the downwelling beneath Pangea 
evolved into an upwelling, forming or reinforc-
ing the African LLSVP, degree-2 convection 
reached maximum dominance again during 
supercontinent breakup (Conrad et al., 2013). 
Following such a dispersal of the continents to 
their modern locations along the girdle, future 
migration along the girdle would close the Sco-
tia, Caribbean, and Arctic oceans as envisioned 
in the amalgamation by orthoversion of future 
supercontinent Amasia (Mitchell et al., 2012).

If the assembly of megacontinents is geo-
dynamically distinct from the amalgamation 
of supercontinents, then the two tectonic 
processes should generate contrasting proxy 
signals. The assembly of megacontinents is 

generally associated with negative εHf values 
of zircon (Fig. 4), indicating their assembly 
was accompanied by the significant crustal 
reworking that characterizes Tethyan-style 
collisional orogens. By contrast, positive εHf 
values reflect the reworking of juvenile crust, 
as is typical of collisions between continents 
flanked by circum-Pacific–style accretion-
ary orogens (Spencer et al., 2013). Although 
megacontinents Nuna and Gondwana have 
pronounced εHf troughs of crustal reworking, 
that of Umkondia is comparatively very muted. 
Strikingly, this exception is consistent with 
myriad geologic proxies that suggest the as-
sembly of Rodinia was distinct from that of 
supercontinents before and after it (Liu et al., 
2017). If each supercontinent was preceded 
by a megacontinent, it follows that the oldest 
supercontinent was preceded by an evolution 
from supercraton (Bleeker, 2003) to megac-
ontinent and then to supercontinent (Fig. 4). 
The geodynamic driver of that process, pos-
sibly the final global linking of the modern 
plate tectonic network (Wan et al., 2020), may 
signal a significant reorganization of mantle 
convection at ca. 2 Ga.
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Figure 4.  Correspondence between megacontinents and orogenic magmatism. Megaconti-
nents are generally associated with increased crustal reworking. Hf isotopes of zircon (εHf) 
are shown as a 2000-point moving average (Puetz and Condie, 2019). Dashed line is linear 
regression of the εHf data. Archean supercratons (e.g., Superia) are thought to be segregated 
and small landmasses, unlike Proterozoic-Phanerozoic supercontinents, with the global plate 
network linking up between the supercratons–supercontinent transition (Wan et al., 2020).
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