65 research outputs found

    Migration, Dispersal, and Gene Flow of Harvested Aquatic Species in the Canadian Arctic

    Get PDF
    Migration occurs when key aspects of the life cycle such as growth, reproduction, or maintenance cannot all be completed in one location. The Arctic habitats are variable and Arctic species are often migratory. The predictable nature of migrations in both space and time allow Arctic people to harvest fishes and marine mammals. We describe migratory/dispersal behavior in four types of taxa from the Canadian Arctic: anadromous and freshwater fishes, marine fishes, marine invertebrates, and marine mammals. Patterns of migration are remarkably different between these groups, in particular between distances migrated, seasonal timing of migrations, and the degree of reproductive isolation. Migratory anadromous and freshwater fishes become adapted to specific locations resulting in complex life histories and intra- and inter-population variation. Marine mammals not only migrate longer distances but also appear to have distinct demographic populations over large scales. Marine fishes tend to be panmictic, probably due to the absence of barriers that would restrict gene flow. Migratory patterns also reflect feeding or rearing areas and/or winter refugia. Migratory patterns of harvested aquatic organisms in the Canadian north are extremely variable and have shaped the north in terms of harvest, communities, and culture

    Cancer therapy shapes the fitness landscape of clonal hematopoiesis.

    Get PDF
    Acquired mutations are pervasive across normal tissues. However, understanding of the processes that drive transformation of certain clones to cancer is limited. Here we study this phenomenon in the context of clonal hematopoiesis (CH) and the development of therapy-related myeloid neoplasms (tMNs). We find that mutations are selected differentially based on exposures. Mutations in ASXL1 are enriched in current or former smokers, whereas cancer therapy with radiation, platinum and topoisomerase II inhibitors preferentially selects for mutations in DNA damage response genes (TP53, PPM1D, CHEK2). Sequential sampling provides definitive evidence that DNA damage response clones outcompete other clones when exposed to certain therapies. Among cases in which CH was previously detected, the CH mutation was present at tMN diagnosis. We identify the molecular characteristics of CH that increase risk of tMN. The increasing implementation of clinical sequencing at diagnosis provides an opportunity to identify patients at risk of tMN for prevention strategies

    In Support of a Patient-Driven Initiative and Petition to Lower the High Price of Cancer Drugs

    Get PDF
    Comment in Lowering the High Cost of Cancer Drugs--III. [Mayo Clin Proc. 2016] Lowering the High Cost of Cancer Drugs--I. [Mayo Clin Proc. 2016] Lowering the High Cost of Cancer Drugs--IV. [Mayo Clin Proc. 2016] In Reply--Lowering the High Cost of Cancer Drugs. [Mayo Clin Proc. 2016] US oncologists call for government regulation to curb drug price rises. [BMJ. 2015

    Increased mitochondrial DNA diversity in ancient Columbia River basin Chinook salmon Oncorhynchus tshawytscha

    Get PDF
    The Columbia River and its tributaries provide essential spawning and rearing habitat for many salmonid species, including Chinook salmon (Oncorhynchus tshawytscha). Chinook salmon were historically abundant throughout the basin and Native Americans in the region relied heavily on these fish for thousands of years. Following the arrival of Europeans in the 1800s, salmon in the basin experienced broad declines linked to overfishing, water diversion projects, habitat destruction, connectivity reduction, introgression with hatchery-origin fish, and hydropower development. Despite historical abundance, many native salmonids are now at risk of extinction. Research and management related to Chinook salmon is usually explored under what are termed “the four H’s”: habitat, harvest, hatcheries, and hydropower; here we explore a fifth H, history. Patterns of prehistoric and contemporary mitochondrial DNA variation from Chinook salmon were analyzed to characterize and compare population genetic diversity prior to recent alterations and, thus, elucidate a deeper history for this species. A total of 346 ancient and 366 contemporary samples were processed during this study. Species was determined for 130 of the ancient samples and control region haplotypes of 84 of these were sequenced. Diversity estimates from these 84 ancient Chinook salmon were compared to 379 contemporary samples. Our analysis provides the first direct measure of reduced genetic diversity for Chinook salmon from the ancient to the contemporary period, as measured both in direct loss of mitochondrial haplotypes and reductions in haplotype and nucleotide diversity. However, these losses do not appear equal across the basin, with higher losses of diversity in the mid-Columbia than in the Snake subbasin. The results are unexpected, as the two groups were predicted to share a common history as parts of the larger Columbia River Basin, and instead indicate that Chinook salmon in these subbasins may have divergent demographic histories.Ye

    Data from: Genetic stock structure of Anadromous Arctic char in Canada’s Central Arctic: potential implications for the management of Canada’s largest Arctic char commercial fishery

    No full text
    The Arctic Char Salvelinus alpinus is widely considered the most important subsistence fish species in the Canadian Arctic. Throughout the species’ range, commercial fisheries for Arctic Char also exist, the management of which primarily follows river-specific harvest strategies. Such an approach, however, may not be appropriate if the management unit or stock does not accurately reflect a demographically independent population or if mixtures of populations are being harvested. We assayed microsatellite DNA variation among 744 Arctic Char from the Cambridge Bay region, Nunavut, where the largest commercial fishery for the species exists, in order to identify the most appropriate spatial scale at which these stocks should be managed. Our sampling design specifically mirrored that of the commercial fishery in order to describe patterns of genetic structure and genetic variation within and among the harvested component. We also included Arctic Char from more geographically distant sampling locations to provide a spatial context for genetic stock structuring in the region. Overall, we found moderate but significant structure across the entire study area. In contrast, commercially harvested stocks were weakly differentiated, especially among the stocks that are considered part of the Wellington Bay complex. We propose several hypotheses for this weak differentiation, including (1) our sampling design that mirrored the commercial harvest, (2) high rates of potential gene flow, and (3) large effective population sizes. Our results may have important implications for commercial and subsistence fisheries management, including the notion that there are several potential units of conservation below the species level

    Microsatellite data

    No full text
    Genepop file (3 digit format) containing all microsatellite data. Population names are listed in Table 1 of the paper

    Preference for nearshore and estuarine habitats in anadromous arctic char (Salvelinus alpinus) from the Canadian high Arctic (Victoria island, Nunavut) revealed by acoustic telemetry

    No full text
    We used an array of fixed acoustic receivers (N = 42) to track the summer marine movements of 121 anadromous Arctic char (Salvelinus alpinus) equipped with acoustic transmitters at three locations in the Cambridge Bay region, where commercial and subsistence fisheries target the species. The timing of transitions between salt and fresh water was influenced by the putative river of origin of tagged individuals, but not by their size or sex. Females, however, were more likely to remain proximate to rivers where they were tagged throughout the summer. A majority of fish migrated west from their rivers of origin, primarily moving between estuarine environments. Individuals occupied estuaries for several days between bouts of marine movement, and these periods of residency coincided with spring tides in some estuaries. We also recorded increased numbers of detections on receivers located less than 1.5 km from the coast, indicating a preference for nearshore habitats. Finally, we report evidence of extensive stock mixing throughout the summer, including at known fishing locations and periods, a finding with implications for fisheries management
    corecore