13 research outputs found

    Shedding light on the D1-like receptors : a fluorescence-based toolbox for visualization of the D1 and D5 receptors

    Get PDF
    Funding: Universitat de Barcelona; Fonds der Chemischen Industrie. Grant Number: 661688; University of Regensburg graduate school “Receptor Dynamics: Emerging Paradigms for Novel Drugs. Grant Number: K-BM-2013-247; Elite Network of Bavaria Deutsche Forschungsgemeinschaft. Grant Numbers: 421152132, SFB1423, SFB1470; Spanish MCIN/AEI/10.13039/501100011033. Grant Number: PID2021-126600OB−I00; European Union Next Generation EU/PRTR.Dopamine D1-like receptors are the most abundant type of dopamine receptors in the central nervous system and, even after decades of discovery, still highly interesting for the study of neurological diseases. We herein describe the synthesis of a new set of fluorescent ligands, structurally derived from D1R antagonist SCH-23390 and labeled with two different fluorescent dyes, as tool compounds for the visualization of D1-like receptors. Pharmacological characterization in radioligand binding studies identified UR-NR435 (25) as a high-affinity ligand for D1-like receptors (pKi (D1R) = 8.34, pKi (D5R) = 7.62) with excellent selectivity towards D2-like receptors. Compound 25 proved to be a neutral antagonist at the D1R and D5R in a Gs heterotrimer dissociation assay, an important feature to avoid receptor internalization and degradation when working with whole cells. The neutral antagonist 25 displayed rapid association and complete dissociation to the D1R in kinetic binding studies using confocal microscopy verifying its applicability for fluorescence microscopy. Moreover, molecular brightness studies determined a single-digit nanomolar binding affinity of the ligand, which was in good agreement with radioligand binding data. For this reason, this fluorescent ligand is a useful tool for a sophisticated characterization of native D1 receptors in a variety of experimental setups.Publisher PDFPeer reviewe

    Shedding Light on the D1‐Like Receptors: A Fluorescence‐Based Toolbox for Visualization of the D1 and D5 Receptors

    Get PDF
    Dopamine D1-like receptors are the most abundant type of dopamine receptors in the central nervous system and, even after decades of discovery, still highly interesting for the study of neurological diseases. We herein describe the synthesis of a new set of fluorescent ligands, structurally derived from D1R antagonist SCH-23390 and labeled with two different fluorescent dyes, as tool compounds for the visualization of D1-like receptors. Pharmacological characterization in radioligand binding studies identified UR-NR435 (25) as a high-affinity ligand for D1-like receptors (pKi (D1R)=8.34, pKi (D5R)=7.62) with excellent selectivity towards D2-like receptors. Compound 25 proved to be a neutral antagonist at the D1R and D5R in a Gs heterotrimer dissociation assay, an important feature to avoid receptor internalization and degradation when working with whole cells. The neutral antagonist 25 displayed rapid association and complete dissociation to the D1R in kinetic binding studies using confocal microscopy verifying its applicability for fluorescence microscopy. Moreover, molecular brightness studies determined a single-digit nanomolar binding affinity of the ligand, which was in good agreement with radioligand binding data. For this reason, this fluorescent ligand is a useful tool for a sophisticated characterization of native D1 receptors in a variety of experimental setups

    Fluorescent Tools for the Imaging of Dopamine D2‐Like Receptors

    Get PDF
    The family of dopamine D2-like receptors represents an interesting target for a variety of neurological diseases, e. g. Parkinson's disease (PD), addiction, or schizophrenia. In this study we describe the synthesis of a new set of fluorescent ligands as tools for visualization of dopamine D2-like receptors. Pharmacological characterization in radioligand binding studies identified UR-MN212 (20) as a high-affinity ligand for D2-like receptors (pKi (D2longR)=8.24, pKi (D3R)=8.58, pKi (D4R)=7.78) with decent selectivity towards D1-like receptors. Compound 20 is a neutral antagonist in a Go1 activation assay at the D2longR, D3R, and D4R, which is an important feature for studies using whole cells. The neutral antagonist 20, equipped with a 5-TAMRA dye, displayed rapid association to the D2longR in binding studies using confocal microscopy demonstrating its suitability for fluorescence microscopy. Furthermore, in molecular brightness studies, the ligand's binding affinity could be determined in a single-digit nanomolar range that was in good agreement with radioligand binding data. Therefore, the fluorescent compound can be used for quantitative characterization of native D2-like receptors in a broad variety of experimental setups

    A Versatile Sub-Nanomolar Fluorescent Ligand Enables NanoBRET Binding Studies and Single-Molecule Microscopy at the Histamine H3 Receptor

    No full text
    The histamine H3 receptor (H3R) is considered an attractive drug target for various neurological diseases. We here report the synthesis of UR-NR266, a novel fluorescent H3R ligand. Broad pharmacological characterization revealed UR-NR266 as a sub-nanomolar compound at the H3R with an exceptional selectivity profile within the histamine receptor family. The presented neutral antagonist showed fast association to its target and complete dissociation in kinetic binding studies. Detailed characterization of standard H3R ligands in NanoBRET competition binding using UR-NR266 highlights its value as a versatile pharmacological tool to analyze future H3R ligands. The low nonspecific binding observed in all experiments could also be verified in TIRF and confocal microscopy. This fluorescent probe allows the highly specific analysis of native H3R in various assays ranging from optical high throughput technologies to biophysical analyses and single-molecule studies in its natural environment. An off-target screening at 14 receptors revealed UR-NR266 as a selective compound

    Fluorescent Tools for the Imaging of Dopamine D2-Like Receptors

    Get PDF
    Funding: S.P. was supported by the Fonds der Chemischen Industrie (No. 661688) and the University of Regensburg (Academic Research Sabbatical Program). Financial support by the graduate school “Receptor Dynamics: Emerging Paradigms for Novel Drugs (K-BM-2013-247)” of the Elite Network of Bavaria (ENB) for S.P., N.R., M.N. and H.S. is gratefully acknowledged. We would like to thank the Deutsche Forschungsgemeinschaft (DFG) for support through project 421152132 SFB1423 subproject C03 (P.A.) and SFB 1470 subproject A01 (P.A.). R.F., as PI, was funded by Spanish MCIN/AEI/10.13039/501100011033 (grant PID2021-126600OB-I00) and by the European Union Next Generation EU/PRTR (ERDF A way of making Europe). Open Access funding enabled and organized by Projekt DEAL.The family of dopamine D2-like receptors represents an interesting target for a variety of neurological diseases, e. g. Parkinson's disease (PD), addiction, or schizophrenia. In this study we describe the synthesis of a new set of fluorescent ligands as tools for visualization of dopamine D2-like receptors. Pharmacological characterization in radioligand binding studies identified UR-MN212 ( 20 ) as a high-affinity ligand for D2-like receptors (pKi (D2longR)=8.24, pKi (D3R)=8.58, pKi (D4R)=7.78) with decent selectivity towards D1-like receptors. Compound 20 is a neutral antagonist in a Go1 activation assay at the D2longR, D3R, and D4R, which is an important feature for studies using whole cells. The neutral antagonist 20 , equipped with a 5-TAMRA dye, displayed rapid association to the D2longR in binding studies using confocal microscopy demonstrating its suitability for fluorescence microscopy. Furthermore, in molecular brightness studies, the ligand's binding affinity could be determined in a single-digit nanomolar range that was in good agreement with radioligand binding data. Therefore, the fluorescent compound can be used for quantitative characterization of native D2-like receptors in a broad variety of experimental setups.Publisher PDFPeer reviewe

    Structural and molecular insight into piperazine and piperidine derivatives as histamine H<SUB>3</SUB> and sigma-1 receptor antagonists with promising antinociceptive properties

    No full text
    [Image: see text] In an attempt to extend recent studies showing that some clinically evaluated histamine H(3) receptor (H(3)R) antagonists possess nanomolar affinity at sigma-1 receptors (σ(1)R), we selected 20 representative structures among our previously reported H(3)R ligands to investigate their affinity at σRs. Most of the tested compounds interact with both sigma receptors to different degrees. However, only six of them showed higher affinity toward σ(1)R than σ(2)R with the highest binding preference to σ(1)R for compounds 5, 11, and 12. Moreover, all these ligands share a common structural feature: the piperidine moiety as the fundamental part of the molecule. It is most likely a critical structural element for dual H(3)/σ(1) receptor activity as can be seen by comparing the data for compounds 4 and 5 (hH(3)R K(i) = 3.17 and 7.70 nM, σ(1)R K(i) = 1531 and 3.64 nM, respectively), where piperidine is replaced by piperazine. We identified the putative protein–ligand interactions responsible for their high affinity using molecular modeling techniques and selected compounds 5 and 11 as lead structures for further evaluation. Interestingly, both ligands turned out to be high-affinity histamine H(3) and σ(1) receptor antagonists with negligible affinity at the other histamine receptor subtypes and promising antinociceptive activity in vivo. Considering that many literature data clearly indicate high preclinical efficacy of individual selective σ(1) or H(3)R ligands in various pain models, our research might be a breakthrough in the search for novel, dual-acting compounds that can improve existing pain therapies. Determining whether such ligands are more effective than single-selective drugs will be the subject of our future studies

    The LHCb upgrade I

    No full text
    International audienceThe LHCb upgrade represents a major change of the experiment. The detectors have been almost completely renewed to allow running at an instantaneous luminosity five times larger than that of the previous running periods. Readout of all detectors into an all-software trigger is central to the new design, facilitating the reconstruction of events at the maximum LHC interaction rate, and their selection in real time. The experiment's tracking system has been completely upgraded with a new pixel vertex detector, a silicon tracker upstream of the dipole magnet and three scintillating fibre tracking stations downstream of the magnet. The whole photon detection system of the RICH detectors has been renewed and the readout electronics of the calorimeter and muon systems have been fully overhauled. The first stage of the all-software trigger is implemented on a GPU farm. The output of the trigger provides a combination of totally reconstructed physics objects, such as tracks and vertices, ready for final analysis, and of entire events which need further offline reprocessing. This scheme required a complete revision of the computing model and rewriting of the experiment's software

    The LHCb upgrade I

    No full text
    International audienceThe LHCb upgrade represents a major change of the experiment. The detectors have been almost completely renewed to allow running at an instantaneous luminosity five times larger than that of the previous running periods. Readout of all detectors into an all-software trigger is central to the new design, facilitating the reconstruction of events at the maximum LHC interaction rate, and their selection in real time. The experiment's tracking system has been completely upgraded with a new pixel vertex detector, a silicon tracker upstream of the dipole magnet and three scintillating fibre tracking stations downstream of the magnet. The whole photon detection system of the RICH detectors has been renewed and the readout electronics of the calorimeter and muon systems have been fully overhauled. The first stage of the all-software trigger is implemented on a GPU farm. The output of the trigger provides a combination of totally reconstructed physics objects, such as tracks and vertices, ready for final analysis, and of entire events which need further offline reprocessing. This scheme required a complete revision of the computing model and rewriting of the experiment's software

    The LHCb upgrade I

    No full text
    The LHCb upgrade represents a major change of the experiment. The detectors have been almost completely renewed to allow running at an instantaneous luminosity five times larger than that of the previous running periods. Readout of all detectors into an all-software trigger is central to the new design, facilitating the reconstruction of events at the maximum LHC interaction rate, and their selection in real time. The experiment's tracking system has been completely upgraded with a new pixel vertex detector, a silicon tracker upstream of the dipole magnet and three scintillating fibre tracking stations downstream of the magnet. The whole photon detection system of the RICH detectors has been renewed and the readout electronics of the calorimeter and muon systems have been fully overhauled. The first stage of the all-software trigger is implemented on a GPU farm. The output of the trigger provides a combination of totally reconstructed physics objects, such as tracks and vertices, ready for final analysis, and of entire events which need further offline reprocessing. This scheme required a complete revision of the computing model and rewriting of the experiment's software
    corecore