60 research outputs found

    Ein Werkzeug zur Festigung politischer Vor-Urteile

    Get PDF
    Die wissenschaftliche Politikberatung boomt. Das ist gut so, solange sie nicht den Anspruch höherer Objektivität für sich reklamiert. Seriöse Beratung ist nicht die, die ihren Ergebnissen den Anstrich von Unwiderlegbarkeit gibt, sondern die, die ihre nicht-objektivierbaren Ausgangsdaten demonstrativ offenlegt

    subtee: An R Package for Subgroup Treatment Effect Estimation in Clinical Trials

    Get PDF
    The investigation of subgroups is an integral part of randomized clinical trials. Exploration of treatment effect heterogeneity is typically performed by covariate-adjusted analyses including treatment-by-covariate interactions. Several statistical techniques, such as model averaging and bagging, were proposed recently to address the problem of selection bias in treatment effect estimates for subgroups. In this paper, we describe the subtee R package for subgroup treatment effect estimation. The package can be used for all commonly encountered type of outcomes in clinical trials (continuous, binary, survival, count). We also provide additional functions to build the subgroup variables to be used and to plot the results using forest plots. The functions are demonstrated using data from a clinical trial investigating a treatment for prostate cancer with a survival endpoint

    Stromnetze für 65 Prozent Erneuerbare bis 2030

    Get PDF
    STROMNETZE FÜR 65 PROZENT ERNEUERBARE BIS 2030 Stromnetze für 65 Prozent Erneuerbare bis 2030 / Litz, Philipp (Rights reserved) ( -

    Rückenwind für Klimaneutralität

    Get PDF
    RÜCKENWIND FÜR KLIMANEUTRALITÄT Rückenwind für Klimaneutralität / Rosenkranz, Gerd (Rights reserved) ( -

    Die Ökostromlücke, ihre Strommarkteffekte und wie sie gestopft werden kann

    Get PDF
    DIE ÖKOSTROMLÜCKE, IHRE STROMMARKTEFFEKTE UND WIE SIE GESTOPFT WERDEN KANN Die Ökostromlücke, ihre Strommarkteffekte und wie sie gestopft werden kann / Lenck, Thorsten (Rights reserved) ( -

    Dose-finding study of valspodar (PSC 833) with daunorubicin and cytarabine to reverse multidrug resistance in elderly patients with previously untreated acute myeloid leukemia

    Get PDF
    Introduction: This trial was designed to determine the maximum tolerated dose of intravenous daunorubicin (DNR) in combination with valspodar and to test the feasibility of P-glycoprotein modulation using valspodar in elderly patients with previously untreated acute myelogenous leukemia receiving standard induction chemotherapy. Methods: Patients ≥60 years of age with previously untreated AML received valspodar (10 mg/kg/24 h by continuous intravenous infusion [CIV] on days 1-4 with a 2-mg/kg loading dose on day 1) in conjunction with two cycles of induction chemotherapy consisting of cytarabine (200 mg/m2 CIV on days 1-7), and DNR (35 mg/m2 [cohort 1] or 45 mg/m2 [cohort 2] on days 1-3, intravenous bolus). Patients were assessed for dose-limiting toxicities (DLT), response rate, event-free and overall survival, and pharmacokinetics of valspodar and DNR. Results: Valspodar was well tolerated at the lower DNR dose level (ie, 35 mg/m2) resulting in a 21% rate of DLT and only three toxic deaths. Treatment-related mortality was unacceptably high at the 45 mg/m2 DNR dose level. The complete response rate was 49% overall and similar in both cohorts. The median overall survival of patients was 333 days in cohort 1 compared to 98 days in cohort 2. At baseline, 70% of assessable patients were P-glycoprotein positive. Conclusion: Substantial inhibition of P-glycoprotein activity can be achieved in this patient population at clinically tolerable doses of valspodar and DNR. The maximum tolerated dose of DNR was established as 35 mg/m2. This regimen is being further evaluated in phase III trials.</p

    Applicability and added value of novel methods to improve drug development in rare diseases

    Get PDF
    The ASTERIX project developed a number of novel methods suited to study small populations. The objective of this exercise was to evaluate the applicability and added value of novel methods to improve drug development in small populations, using real world drug development programmes as reported in European Public Assessment Reports. The applicability and added value of thirteen novel methods developed within ASTERIX were evaluated using data from 26 European Public Assessment Reports (EPARs) for orphan medicinal products, representative of rare medical conditions as predefined through six clusters. The novel methods included were 'innovative trial designs' (six methods), 'level of evidence' (one method), 'study endpoints and statistical analysis' (four methods), and 'meta-analysis' (two methods) and they were selected from the methods developed within ASTERIX based on their novelty; methods that discussed already available and applied strategies were not included for the purpose of this validation exercise. Pre-requisites for application in a study were systematized for each method, and for each main study in the selected EPARs it was assessed if all pre-requisites were met. This direct applicability using the actual study design was firstly assessed. Secondary, applicability and added value were explored allowing changes to study objectives and design, but without deviating from the context of the drug development plan. We evaluated whether differences in applicability and added value could be observed between the six predefined condition clusters. Direct applicability of novel methods appeared to be limited to specific selected cases. The applicability and added value of novel methods increased substantially when changes to the study setting within the context of drug development were allowed. In this setting, novel methods for extrapolation, sample size re-assessment, multi-armed trials, optimal sequential design for small sample sizes, Bayesian sample size re-estimation, dynamic borrowing through power priors and fall-back tests for co-primary endpoints showed most promise - applicable in more than 40% of evaluated EPARs in all clusters. Most of the novel methods were applicable to conditions in the cluster of chronic and progressive conditions, involving multiple systems/organs. Relatively fewer methods were applicable to acute conditions with single episodes. For the chronic clusters, Goal Attainment Scaling was found to be particularly applicable as opposed to other (non-chronic) clusters. Novel methods as developed in ASTERIX can improve drug development programs. Achieving optimal added value of these novel methods often requires consideration of the entire drug development program, rather than reconsideration of methods for a specific trial. The novel methods tested were mostly applicable in chronic conditions, and acute conditions with recurrent episodes. The online version of this article (10.1186/s13023-018-0925-0) contains supplementary material, which is available to authorized users

    Characteristics of clinical trials in rare vs. common diseases : A register-based Latvian study

    Get PDF
    Publisher Copyright: © 2018 Logviss et al. This is an open ccess article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and eproduction in any medium, provided the original author and source are credited.Background Conducting clinical studies in small populations may be very challenging; therefore quality of clinical evidence may differ between rare and non-rare disease therapies. Objective This register-based study aims to evaluate the characteristics of clinical trials in rare diseases conducted in Latvia and compare them with clinical trials in more common conditions. Methods The EU Clinical Trials Register (clinicaltrialsregister.eu) was used to identify interventional clinical trials related to rare diseases (n = 51) and to compose a control group of clinical trials in non-rare diseases (n = 102) for further comparison of the trial characteristics. Results We found no significant difference in the use of overall survival as a primary endpoint in clinical trials between rare and non-rare diseases (9.8% vs. 13.7%, respectively). However, clinical trials in rare diseases were less likely to be randomized controlled trials (62.7% vs. 83.3%). Rare and non-rare disease clinical trials varied in masking, with rare disease trials less likely to be double blind (45.1% vs. 63.7%). Active comparators were less frequently used in rare disease trials (36.4% vs. 58.8% of controlled trials). Clinical trials in rare diseases enrolled fewer participants than those in non-rare diseases: In Latvia (mean 18.3 vs. 40.2 subjects, respectively), in the European Economic Area (mean 181.0 vs. 626.9 subjects), and in the whole clinical trial (mean 335.8 vs. 1406.3 subjects). Although, we found no significant difference in trial duration between the groups (mean 38.3 vs. 36.4 months). Conclusions The current study confirms that clinical trials in rare diseases vary from those in non-rare conditions, with notable differences in enrollment, randomization, masking, and the use of active comparators. However, we found no significant difference in trial duration and the use of overall survival as a primary endpoint.publishersversionPeer reviewe

    Idiopathic pulmonary arterial hypertension phenotypes determined by cluster analysis from the COMPERA registry

    Get PDF
    Funding Information: Marius M. Hoeper has received fees for lectures and/or consultations from Acceleron, Actelion, Bayer, MSD, and Pfizer. Nicola Benjamin has received fees for lectures and/or consultations from Actelion. Ekkehard Grünig has received fees for lectures and/or consultations from Actelion, Bayer, GSK, MSD, United Therapeutics, and Pfizer. Karen M. Olsson has received fees for lectures and/or consultations from Actelion, Bayer, United Therapeutics, GSK, and Pfizer. C. Dario Vizza has received fees from Actelion, Bayer, GSK, MSD, Pfizer, and United Therapeutics Europe. Anton Vonk-Noordegraaf has received fees for lectures and/or consultation from Actelion, Bayer, GSK, and MSD. Oliver Distler has/had a consultancy relationship with and/or has received research funding from 4-D Science, Actelion, Active Biotec, Bayer, Biogen Idec, Boehringer Ingelheim Pharma, BMS, ChemoAb, EpiPharm, Ergonex, espeRare foundation, GSK, Genentech/Roche, Inventiva, Lilly, medac, MedImmune, Mitsubishi Tanabe, Pharmacyclics, Pfizer, Sanofi, Serodapharm, and Sinoxa in the area of potential treatments of scleroderma and its complications including pulmonary arterial hypertension. In addition, Prof Distler has a patent for mir-29 for the treatment of systemic sclerosis licensed. Christian Opitz has received fees from Actelion, Bayer, GSK, Pfizer, and Novartis. J. Simon R. Gibbs has received fees for lectures and/or consultations from Actelion, Bayer, Bellerophon, GSK, MSD, and Pfizer. Marion Delcroix has received fees from Actelion, Bayer, GSK, and MSD. H. Ardeschir Ghofrani has received fees from Actelion, Bayer, Gilead, GSK, MSD, Pfizer, and United Therapeutics. Doerte Huscher has received fees for lectures and consultations from Actelion. David Pittrow has received fees for consultations from Actelion, Biogen, Aspen, Bayer, Boehringer Ingelheim, Daiichi Sankyo, and Sanofi. Stephan Rosenkranz has received fees for lectures and/or consultations from Actelion, Bayer, GSK, Pfizer, Novartis, Gilead, MSD, and United Therapeutics. Martin Claussen reports honoraria for lectures from Boehringer Ingelheim Pharma GmbH and Roche Pharma and for serving on advisory boards from Boehringer Ingelheim, outside the submitted work. Heinrike Wilkens reports personal fees from Boehringer and Roche during the conduct of the study and personal fees from Bayer, Biotest, Actelion, GSK, and Pfizer outside the submitted work. Juergen Behr received grants from Boehringer Ingelheim and personal fees for consultation or lectures from Actelion, Bayer, Boehringer Ingelheim, and Roche. Hubert Wirtz reports personal fees from Boehringer Ingelheim and Roche outside the submitted work. Hening Gall reports personal fees from Actelion, AstraZeneca, Bayer, BMS, GSK, Janssen-Cilag, Lilly, MSD, Novartis, OMT, Pfizer, and United Therapeutics outside the submitted work. Elena Pfeuffer-Jovic reports personal fees from Actelion, Boehringer Ingelheim, Novartis, and OMT outside the submitted work. Laura Scelsi reports personal fees from Actelion, Bayer, and MSD outside the submitted work. Siliva Ulrich reports grants from Swiss National Science Foundation, Zurich Lung, Swiss Lung, and Orpha Swiss, and grants and personal fees from Actelion SA/Johnson & Johnson Switzerland and MSD Switzerland outside the submitted work. The remaining authors have no conflicts of interest to disclose. Funding Information: This work was supported by the German Centre of Lung Research (DZL). COMPERA is funded by unrestricted grants from Acceleron , Actelion Pharmaceuticals , Bayer , OMT , and GSK . These companies were not involved in data analysis or the writing of this manuscript. Publisher Copyright: © 2020 The Authors Copyright: Copyright 2020 Elsevier B.V., All rights reserved.The term idiopathic pulmonary arterial hypertension (IPAH) is used to categorize patients with pre-capillary pulmonary hypertension of unknown origin. There is considerable variability in the clinical presentation of these patients. Using data from the Comparative, Prospective Registry of Newly Initiated Therapies for Pulmonary Hypertension, we performed a cluster analysis of 841 patients with IPAH based on age, sex, diffusion capacity of the lung for carbon monoxide (DLCO; <45% vs ≥45% predicted), smoking status, and presence of comorbidities (obesity, hypertension, coronary heart disease, and diabetes mellitus). A hierarchical agglomerative clustering algorithm was performed using Ward's minimum variance method. The clusters were analyzed in terms of baseline characteristics; survival; and response to pulmonary arterial hypertension (PAH) therapy, expressed as changes from baseline to follow-up in functional class, 6-minute walking distance, cardiac biomarkers, and risk. Three clusters were identified: Cluster 1 (n = 106; 12.6%): median age 45 years, 76% females, no comorbidities, mostly never smokers, DLCO ≥45%; Cluster 2 (n = 301; 35.8%): median age 75 years, 98% females, frequent comorbidities, no smoking history, DLCO mostly ≥45%; and Cluster 3 (n = 434; 51.6%): median age 72 years, 72% males, frequent comorbidities, history of smoking, and low DLCO. Patients in Cluster 1 had a better response to PAH treatment than patients in the 2 other clusters. Survival over 5 years was 84.6% in Cluster 1, 59.2% in Cluster 2, and 42.2% in Cluster 3 (unadjusted p < 0.001 for comparison between all groups). The population of patients diagnosed with IPAH is heterogenous. This cluster analysis identified distinct phenotypes, which differed in clinical presentation, response to therapy, and survival.publishersversionPeer reviewe

    Medical treatment of pulmonary hypertension in adults with congenital heart disease : updated and extended results from the International COMPERA-CHD Registry

    Get PDF
    Funding Information: The authors are indebted to the COMPERA investigators and their staff. We explicitly thank Dr. Claudia S. Copeland for the professional editing of the final draft of the manuscript. Funding: COMPERA is funded by unrestricted grants from Acceleron, Actelion Pharmaceuticals (Janssen), Bayer, OMT and GSK. These companies were not involved in data analysis or the writing of this manuscript. Funding Information: ICMJE uniform disclosure form (available at https:// dx.doi.org/10.21037/cdt-21-351). The series “Current Management Aspects in Adult Congenital Heart Disease (ACHD): Part IV” was commissioned by the editorial office without any funding or sponsorship. Dr. DH reports non-financial support from Actelion, Boehringer-Ingelheim, and Shire, outside the submitted work; Dr. DP reports personal fees from Actelion, Biogen, Aspen, Bayer, Boehringer Ingelheim, Daiichi Sankyo, and Sanofi, outside the submitted work; Dr. MD reports personal fees from Actelion, Bayer, GSK and MSD, outside the submitted work; Dr. HAG reports personal fees from Actelion, Bayer, Gilead, GSK, MSD, Pfizer and United Therapeutics, outside the submitted work; Dr. MG reports personal fees from Actelion, Bayer and GSK, outside the submitted work; Dr. MMH reports personal fees from Acceleron, Actelion, Bayer, MSD and Pfizer, outside the submitted work; Dr. CDV reports personal fees from Actelion, Bayer, GSK, MSD, Pfizer, and United Therapeutics, outside the submitted work; Dr. RE reports personal fees from Actelion, Boehringer Ingelheim, OMT, Bayer, and Berlin Chemie; grants from Actelion and Boehringer Ingelheim, outside the submitted work; Dr. MH reports grants and personal fees from Actelion, personal fees from Bayer, Berlin Chemie, Boehringer Ingelheim, GSK, Janssen, Novartis and MSD, outside the submitted work; Dr. MH reports personal fees from Acceleron, Actelion, AstraZeneca, Bayer, BERLIN CHEMIE, GSK, MSD, Novartis and OMT, outside the submitted work; Dr. HW reports personal fees from Action, Bayer, Biotest, Boehringer, GSK, Pfizer, and Roche, outside the submitted work; Dr. DS reports personal fees from Actelion, Bayer, and GSK, outside the submitted work; Dr. LS reports personal fees from Actelion, Bayer, and MSD, outside the submitted work; Dr. SU reports grants from Swiss National Science Foundation, Zurich Lung, Swiss Lung, and Orpha Swiss, grants and personal fees from Actelion SA/Johnson & Johnson, Switzerland, and MSD Switzerland, outside the submitted work; Dr. TJL reports personal fees from Actelion, Janssen-Cilag, BMS, MSD, and OMT GmbH, outside the submitted work; Dr. LB reports personal fees from Actelion, outside the submitted work; Dr. MC reports personal fees from Boehringer Ingelheim Pharma GmbH, Roche Pharma, and Boehringer Ingelheim, outside the submitted work; Dr. HW reports personal fees from Boehringer Ingelheim, and Roche, outside the submitted work. Dr. EG reports personal fees from Actelion, Janssen, Bayer, MSD, Bial, OrPha Swiss GmbH, OMT and Medscape, outside the submitted work; Dr. SR reports personal fees from Actelion, Bayer, GSK, Pfizer, Novartis, Gilead, MSD, and United Therapeutics, outside the submitted work. The authors have no other conflicts of interest to declare. Publisher Copyright: © Cardiovascular Diagnosis and Therapy. All rights reserved.Background: Pulmonary arterial hypertension (PAH) is common in congenital heart disease (CHD). Because clinical-trial data on PAH associated with CHD (PAH-CHD) remain limited, registry data on the long-term course are essential. This analysis aimed to update information from the COMPERA-CHD registry on management strategies based on real-world data. Methods: The prospective international pulmonary hypertension registry COMPERA has since 2007 enrolled more than 10,000 patients. COMPERA-CHD is a sub-registry for patients with PAH-CHD Results: A total of 769 patients with PAH-CHD from 62 specialized centers in 12 countries were included into COMPERA-CHD from January 2007 through September 2020. At the last follow-up in 09/2020, patients [mean age 45.3±16.8 years; 512 (66%) female] had either post-tricuspid shunts (n=359; 46.7%), pre-tricuspid shunts (n=249; 32.4%), complex CHD (n=132; 17.2%), congenital left heart or aortic valve or aortic disease (n=9; 1.3%), or miscellaneous CHD (n=20; 2.6%). The mean 6-minute walking distance was 369±121 m, and 28.2%, 56.0%, and 3.8% were in WHO functional class I/II, III or IV, respectively (12.0% unknown). Compared with the previously published COMPERA-CHD data, after 21 months of followup, the number of included PAH-CHD patients increased by 91 (13.4%). Within this group the number of Eisenmenger patients rose by 39 (16.3%), the number of “Non-Eisenmenger PAH” patients by 45 (26.9%). Currently, among the 674 patients from the PAH-CHD group with at least one follow-up, 450 (66.8%) received endothelin receptor antagonists (ERA), 416 (61.7%) PDE-5 inhibitors, 85 (12.6%) prostacyclin analogues, and 36 (5.3%) the sGC stimulator riociguat. While at first inclusion in the COMPERA-CHD registry, treatment was predominantly monotherapy (69.3%), this has shifted to favoring combination therapy in the current group (53%). For the first time, the nature, frequency, and treatment of significant comorbidities requiring supportive care and medication are described. Conclusions: Analyzing “real life data” from the international COMPERA-CHD registry, we present a comprehensive overview about current management modalities and treatment concepts in PAH-CHD. There was an trend towards more aggressive treatment strategies and combination therapies. In the future, particular attention must be directed to the “Non-Eisenmenger PAH” group and to patients with complex CHD, including Fontan patients.publishersversionPeer reviewe
    corecore