203 research outputs found

    Effect of Modification of the NI Artificial Diet on the Biological Fitness Parameters of Mass Reared Western Tarnished Plant Bug, Lygus hesperus

    Get PDF
    The NI artificial diet is the only known successful diet for mass rearing the western tarnished plant bug, Lygus hesperus Knight (Hemiptera: Miridae). This diet has been used for more than a decade. However, because it contains cooked chicken egg, and thus requires laborious preparation (Cohen 2000), this diet is difficult to use. Three modifications (D1, D2, D3) of the NI diet were investigated in hopes of developing a more easily prepared diet that avoids the cooked egg and improves mass fitness parameters of L. hesperus. The modified D3 diet, containing autoclaved chicken egg yolk based component, had the highest egg/cage/day production (13120 ± 812 SE). This was significantly greater than diets D1, containing autoclaved dry chicken egg yolk based component (9027 ± 811 SE), D2, containing autoclaved chicken egg white based component (8311 ± 628 SE), and NI, which contained autoclaved chicken egg yolk + cooked egg diet (7890 ± 761 SE). Significant differences were observed in the weights of all developmental stages except for eggs and first instar nymphs. Higher rates of fertility, hatchability, and low mortality in nymphs during the first instar were also obtained in the modified D3 diet. The results clearly indicated that the D3 diet provided an opportunity to significantly reduce rearing cost by avoiding time-consuming issues with preparation of a cooked egg diet. This should result in an increase in production capacity and a reduction in production costs

    Sex-biased parental care and sexual size dimorphism in a provisioning arthropod

    Get PDF
    The diverse selection pressures driving the evolution of sexual size dimorphism (SSD) have long been debated. While the balance between fecundity selection and sexual selection has received much attention, explanations based on sex-specific ecology have proven harder to test. In ectotherms, females are typically larger than males, and this is frequently thought to be because size constrains female fecundity more than it constrains male mating success. However, SSD could additionally reflect maternal care strategies. Under this hypothesis, females are relatively larger where reproduction requires greater maximum maternal effort – for example where mothers transport heavy provisions to nests. To test this hypothesis we focussed on digger wasps (Hymenoptera: Ammophilini), a relatively homogeneous group in which only females provision offspring. In some species, a single large prey item, up to 10 times the mother’s weight, must be carried to each burrow on foot; other species provide many small prey, each flown individually to the nest. We found more pronounced female-biased SSD in species where females carry single, heavy prey. More generally, SSD was negatively correlated with numbers of prey provided per offspring. Females provisioning multiple small items had longer wings and thoraxes, probably because smaller prey are carried in flight. Despite much theorising, few empirical studies have tested how sex-biased parental care can affect SSD. Our study reveals that such costs can be associated with the evolution of dimorphism, and this should be investigated in other clades where parental care costs differ between sexes and species

    Role of supplemental foods and habitat structural complexity in persistence and coexistence of generalist predatory mites

    Get PDF
    Variation in the strength of intraguild predation (IGP) may be related to habitat structural complexity and to additional resources outside the narrow predator-prey relationship. We studied the food web interactions on grape, which involves two generalist predatory mites. We evaluated the effects of grape powdery mildew (GPM) as supplemental food, and habitat structural complexity provided by domatia. Our findings suggest that structural and nutritional diversity/complexity promote predatory mite abundance and can help to maintain the beneficial mites - plants association. The effect of these factors on coexistence between predators is influenced by the supplemental food quality and relative differences in body size of interacting species

    Explaining Andean Potato Weevils in Relation to Local and Landscape Features: A Facilitated Ecoinformatics Approach

    Get PDF
    BACKGROUND: Pest impact on an agricultural field is jointly influenced by local and landscape features. Rarely, however, are these features studied together. The present study applies a "facilitated ecoinformatics" approach to jointly screen many local and landscape features of suspected importance to Andean potato weevils (Premnotrypes spp.), the most serious pests of potatoes in the high Andes. METHODOLOGY/PRINCIPAL FINDINGS: We generated a comprehensive list of predictors of weevil damage, including both local and landscape features deemed important by farmers and researchers. To test their importance, we assembled an observational dataset measuring these features across 138 randomly-selected potato fields in Huancavelica, Peru. Data for local features were generated primarily by participating farmers who were trained to maintain records of their management operations. An information theoretic approach to modeling the data resulted in 131,071 models, the best of which explained 40.2-46.4% of the observed variance in infestations. The best model considering both local and landscape features strongly outperformed the best models considering them in isolation. Multi-model inferences confirmed many, but not all of the expected patterns, and suggested gaps in local knowledge for Andean potato weevils. The most important predictors were the field's perimeter-to-area ratio, the number of nearby potato storage units, the amount of potatoes planted in close proximity to the field, and the number of insecticide treatments made early in the season. CONCLUSIONS/SIGNIFICANCE: Results underscored the need to refine the timing of insecticide applications and to explore adjustments in potato hilling as potential control tactics for Andean weevils. We believe our study illustrates the potential of ecoinformatics research to help streamline IPM learning in agricultural learning collaboratives

    Automated Discovery of Food Webs from Ecological Data Using Logic-Based Machine Learning

    Get PDF
    Networks of trophic links (food webs) are used to describe and understand mechanistic routes for translocation of energy (biomass) between species. However, a relatively low proportion of ecosystems have been studied using food web approaches due to difficulties in making observations on large numbers of species. In this paper we demonstrate that Machine Learning of food webs, using a logic-based approach called A/ILP, can generate plausible and testable food webs from field sample data. Our example data come from a national-scale Vortis suction sampling of invertebrates from arable fields in Great Britain. We found that 45 invertebrate species or taxa, representing approximately 25% of the sample and about 74% of the invertebrate individuals included in the learning, were hypothesized to be linked. As might be expected, detritivore Collembola were consistently the most important prey. Generalist and omnivorous carabid beetles were hypothesized to be the dominant predators of the system. We were, however, surprised by the importance of carabid larvae suggested by the machine learning as predators of a wide variety of prey. High probability links were hypothesized for widespread, potentially destabilizing, intra-guild predation; predictions that could be experimentally tested. Many of the high probability links in the model have already been observed or suggested for this system, supporting our contention that A/ILP learning can produce plausible food webs from sample data, independent of our preconceptions about “who eats whom.” Well-characterised links in the literature correspond with links ascribed with high probability through A/ILP. We believe that this very general Machine Learning approach has great power and could be used to extend and test our current theories of agricultural ecosystem dynamics and function. In particular, we believe it could be used to support the development of a wider theory of ecosystem responses to environmental change

    Rapid synchronous type 1 IFN and virus-specific T cell responses characterize first wave non-severe SARS-CoV-2 infections

    Get PDF
    Effective control of SARS-CoV-2 infection on primary exposure may reveal correlates of protective immunity to future variants, but we lack insights into immune responses before or at the time virus is first detected. We use blood transcriptomics, multiparameter flow cytometry, and T cell receptor (TCR) sequencing spanning the time of incident non-severe infection in unvaccinated virus-naive individuals to identify rapid type 1 interferon (IFN) responses common to other acute respiratory viruses and cell proliferation responses that discriminate SARS-CoV-2 from other viruses. These peak by the time the virus is first detected and sometimes precede virus detection. Cell proliferation is most evident in CD8 T cells and associated with specific expansion of SARS-CoV-2-reactive TCRs, in contrast to virus-specific antibodies, which lag by 1–2 weeks. Our data support a protective role for early type 1 IFN and CD8 T cell responses, with implications for development of universal T cell vaccines

    Order of invasion affects the spatial distribution of a reciprocal intraguild predator

    Get PDF
    When intraguild predation is reciprocal, i.e. two predator species kill and feed on each other, theory predicts that well-mixed populations of the two species cannot coexist. At low levels of the shared resource, only the best competitor exists, whereas if the level of the common resource is high, the first species to arrive on a patch can reach high numbers, which prevents the invasion of the second species through intraguild predation. The order of invasion may therefore be of high importance in systems with reciprocal intraguild predation with high levels of productivity, with the species arriving first excluding the other species. However, natural systems are not well mixed and usually have a patchy structure, which gives individuals the possibility to choose patches without the other predator, thus reducing opportunities for intraguild predation. Such avoidance behaviour can cause spatial segregation between predator species, which, in turn, may weaken the intraguild interaction strength and facilitate their co-occurrence in patchy systems. Using a simple set-up, we studied the spatial distribution of two reciprocal intraguild predators when either of them was given priority on a patch with food. We released females of two predatory mite species sequentially and found that both species avoided patches on which the other species was resident. This resulted in partial spatial segregation of the species and thus a lower chance for the two species to encounter each other. Such behaviour reinforces segregation, because heterospecifics avoid patches with established populations of the other species. This may facilitate coexistence of two intraguild predators that would exclude each other in well-mixed populations

    Uncovering trophic interactions in arthropod predators through DNA shotgun-sequencing of gut contents

    Get PDF
    Characterizing trophic networks is fundamental to many questions in ecology, but this typically requires painstaking efforts, especially to identify the diet of small generalist predators. Several attempts have been devoted to develop suitable molecular tools to determine predatory trophic interactions through gut content analysis, and the challenge has been to achieve simultaneously high taxonomic breadth and resolution. General and practical methods are still needed, preferably independent of PCR amplification of barcodes, to recover a broader range of interactions. Here we applied shotgun-sequencing of the DNA from arthropod predator gut contents, extracted from four common coccinellid and dermapteran predators co-occurring in an agroecosystem in Brazil. By matching unassembled reads against six DNA reference databases obtained from public databases and newly assembled mitogenomes, and filtering for high overlap length and identity, we identified prey and other foreign DNA in the predator guts. Good taxonomic breadth and resolution was achieved (93% of prey identified to species or genus), but with low recovery of matching reads. Two to nine trophic interactions were found for these predators, some of which were only inferred by the presence of parasitoids and components of the microbiome known to be associated with aphid prey. Intraguild predation was also found, including among closely related ladybird species. Uncertainty arises from the lack of comprehensive reference databases and reliance on low numbers of matching reads accentuating the risk of false positives. We discuss caveats and some future prospects that could improve the use of direct DNA shotgun-sequencing to characterize arthropod trophic networks

    The importance of alternative host plants as reservoirs of the cotton leaf hopper, Amrasca devastans, and its natural enemies

    Get PDF
    Many agricultural pests can be harboured by alternative host plants but these can also harbour the pests’ natural enemies. We evaluated the capacity of non-cotton plant species (both naturally growing and cultivated) to function as alternative hosts for the cotton leaf hopper Amrasca devastans (Homoptera: Ciccadellidae) and its natural enemies. Forty-eight species harboured A. devastans. Twenty-four species were true breeding hosts, bearing both nymphal and adult A. devastans, the rest were incidental hosts. The crop Ricinus communis and the vegetables Abelmoschus esculentus and Solanum melongena had the highest potential for harbouring A. devastans and carrying it over into the seedling cotton crop. Natural enemies found on true alternative host plants were spiders, predatory insects (Chrysoperla carnea, Coccinellids, Orius spp. and Geocoris spp.) and two species of egg parasitoids (Arescon enocki and Anagrus sp.). Predators were found on 23 species of alternative host plants, especially R. communis. Parasitoids emerged from one crop species (R. communis) and three vegetable species; with 39 % of A. devastans parasitised. We conclude that the presence of alternative host plants provides both advantages and disadvantages to the cotton agro-ecosystem because they are a source of both natural enemy and pest species. To reduce damage by A. devastans, we recommend that weeds that harbour the pest should be removed, that cotton cultivation with R. communis, A. esculentus, and S. melongena should be avoided, that pesticides should be applied sparingly to cultivate alternative host plants and that cotton crops should be sown earlier
    corecore