251 research outputs found

    The stochastic dynamics of nanoscale mechanical oscillators immersed in a viscous fluid

    Get PDF
    The stochastic response of nanoscale oscillators of arbitrary geometry immersed in a viscous fluid is studied. Using the fluctuation-dissipation theorem it is shown that deterministic calculations of the governing fluid and solid equations can be used in a straightforward manner to directly calculate the stochastic response that would be measured in experiment. We use this approach to investigate the fluid coupled motion of single and multiple cantilevers with experimentally motivated geometries.Comment: 5 pages, 5 figure

    Dynamical Response of Nanomechanical Oscillators in Immiscible Viscous Fluid for in vitro Biomolecular Recognition

    Full text link
    Dynamical response of nanomechanical cantilever structures immersed in a viscous fluid is important to in vitro single-molecule force spectroscopy, biomolecular recognition of disease-specific proteins, and the detection of microscopic dynamics of proteins. Here we study the stochastic response of biofunctionalized nanomechanical cantilevers beam in a viscous fluid. Using the fluctuation-dissipation theorem we derive an exact expression for the spectral density of the displacement and a linear approximation for the resonance frequency shift. We find that in a viscous solution the frequency shift of the nanoscale cantilever is determined by surface stress generated by biomolecular interaction with negligible contributions from mass loading.Comment: 4 pages, 2 figures, RevTex4. See http://nano.bu.edu/ for related paper

    Optimal Design of Robust Combinatorial Mechanisms for Substitutable Goods

    Full text link
    In this paper we consider multidimensional mechanism design problem for selling discrete substitutable items to a group of buyers. Previous work on this problem mostly focus on stochastic description of valuations used by the seller. However, in certain applications, no prior information regarding buyers' preferences is known. To address this issue, we consider uncertain valuations and formulate the problem in a robust optimization framework: the objective is to minimize the maximum regret. For a special case of revenue-maximizing pricing problem we present a solution method based on mixed-integer linear programming formulation

    The stochastic dynamics of micron and nanoscale elastic cantilevers in fluid: fluctuations from dissipation

    Get PDF
    The stochastic dynamics of micron and nanoscale cantilevers immersed in a viscous fluid are quantified. Analytical results are presented for long slender cantilevers driven by Brownian noise. The spectral density of the noise force is not assumed to be white and the frequency dependence is determined from the fluctuation-dissipation theorem. The analytical results are shown to be useful for the micron scale cantilevers that are commonly used in atomic force microscopy. A general thermodynamic approach is developed that is valid for cantilevers of arbitrary geometry as well as for arrays of multiple cantilevers whose stochastic motion is coupled through the fluid. It is shown that the fluctuation-dissipation theorem permits the calculation of stochastic quantities via straightforward deterministic methods. The thermodynamic approach is used with deterministic finite element numerical simulations to quantify the autocorrelation and noise spectrum of cantilever fluctuations for a single micron scale cantilever and the cross-correlations and noise spectra of fluctuations for an array of two experimentally motivated nanoscale cantilevers as a function of cantilever separation. The results are used to quantify the noise reduction possible using correlated measurements with two closely spaced nanoscale cantilevers.Comment: Submitted to Nanotechnology April 26, 200

    On similarity and pseudo-similarity solutions of Falkner-Skan boundary layers

    Full text link
    The present work deals with the two-dimensional incompressible,laminar, steady-state boundary layer equations. First, we determinea family of velocity distributions outside the boundary layer suchthat these problems may have similarity solutions. Then, we examenin detail new exact solutions, called Pseudo--similarity, where the external velocity varies inversely-linear with the distance along the surface $ (U_e(x) = U_\infty x^{-1}). The present work deals with the two-dimensional incompressible, laminar, steady-state boundary layer equations. First, we determine a family of velocity distributions outside the boundary layer such that these problems may have similarity solutions. Then, we examenin detail new exact solutions. The analysis shows that solutions exist only for a lateral suction. For specified conditions, we establish the existence of an infinite number of solutions, including monotonic solutions and solutions which oscillate an infinite number of times and tend to a certain limit. The properties of solutions depend onthe suction parameter. Furthermore, making use of the fourth--order Runge--Kutta scheme together with the shooting method, numerical solutions are obtained.Comment: 15 page

    Spatial Stability of Incompressible Attachment-Line Flow

    Get PDF
    Linear stability analysis of incompressible attachment-line flow is presented within the spatial framework. The system of perturbation equations is solved using spectral collocation. This system has been solved in the past using the temporal approach and the current results are shown to be in excellent agreement with neutral temporal calculations. Results amenable to direct comparison with experiments are then presented for the case of zero suction. The global solution method utilized for solving the eigenproblem yields, aside from the well-understood primary mode, the full spectrum of least-damped waves. Of those, a new mode, well separated from the continuous spectrum is singled out and discussed. Further, relaxation of the condition of decaying perturbations in the far-field results in the appearance of sinusoidal modes akin to those found in the classical Orr-Sommerfeld problem. Finally, the continuous spectrum is demonstrated to be amenable to asymptotic analysis. Expressions are derived for the location, in parameter space, of the continuous spectrum, as well as for the limiting cases of practical interest. In the large Reynolds number limit the continuous spectrum is demonstrated to be identical to that of the Orr-Sommerfeld equation

    Soft systems methodology: a context within a 50-year retrospective of OR/MS

    Get PDF
    Soft systems methodology (SSM) has been used in the practice of operations research and management science OR/MS) since the early 1970s. In the 1990s, it emerged as a viable academic discipline. Unfortunately, its proponents consider SSM and traditional systems thinking to be mutually exclusive. Despite the differences claimed by SSM proponents between the two, they have been complementary. An extensive sampling of the OR/MS literature over its entire lifetime demonstrates the richness with which the non-SSM literature has been addressing the very same issues as does SSM

    The instability of the boundary layer over a disk rotating in an enforced axial flow

    Get PDF
    We consider the convective instability of stationary and traveling modes within the boundary layer over a disk rotating in a uniform axial flow. Complementary numerical and high Reynolds number asymptotic analyses are presented. Stationary and traveling modes of type I (crossflow) and type II (streamline curvature) are found to exist within the boundary layer at all axial flow rates considered. For low to moderate axial flows, slowly traveling type I modes are found to be the most amplified, and quickly traveling type II modes are found to have the lower critical Reynolds numbers. However, near-stationary type I modes are expected to be selected due to a balance being struck between onset and amplification. Axial flow is seen to stabilize the boundary layer by increasing the critical Reynolds numbers and reducing amplification rates of both modes. However, the relative importance of type II modes increases with axial flow and they are, therefore, expected to dominate for sufficiently high rates. The application to chemical vapour deposition(CVD) reactors is considered

    Knowledge management: a review of the field and of OR's contribution

    Get PDF
    This paper examines the field of knowledge management (KM) and identifies the role of operational research (OR) in key milestones and in KM's future. With the presence of the OR Society journal Knowledge Management Research and Practice and with the INFORMS journal Organization Science, OR may be assumed to have an explicit and a leading role in KM. Unfortunately, the origins and the evidence of recent research efforts do not fully support this assumption. We argue that while OR has been inside many of the milestones there is no explicit recognition of its role and while OR research on KM has considerably increased in the last 5 years, it still forms a rather modest explicit contribution to KM research. Nevertheless, the depth of OR's experience in decision-making models and decision support systems, soft systems with hard systems and in risk management suggests that OR is uniquely placed to lead future KM developments. We suggest that a limiting aspect of whether OR will be seen to have a significant profile will be the extent to which developments are recognized as being informed by OR
    corecore