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Abstract

We consider the convective instability of stationary and traveling modes within the
boundary layer over a disk rotating in a uniform axial flow. Complementary numerical
and high Reynolds number asymptotic analyses are presented. Stationary and traveling
modes of type I (crossflow) and type II (streamline curvature) are found to exist within
the boundary layer at all axial flow rates considered. For low to moderate axial flows,
slowly-traveling type I modes are found to be the most amplified and quickly-traveling
type II modes are found to have the lower critical Reynolds numbers. However, near-
stationary type I modes are expected to be selected due to a balance being struck
between onset and amplification. Axial flow is seen to stabilize the boundary layer
by increasing the critical Reynolds numbers and reducing amplification rates of both
modes. However, the relative importance of type II modes increases with axial flow
and they are therefore expected to dominate for sufficiently high rates. The application
to chemical vapour deposition (CVD) reactors is considered.

1 Introduction

This paper extends the work of [1] and [2] by considering the effect of a uniform axial

flow on the type I and II modes of convective instability within the boundary-layer flow over

a rotating disk. This paper is part of a series by the present authors which consider the
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convective instability of the boundary-layer flow over a family of rotating cones (including

the disk as the limiting half angle) both in and out of axial flow. This series commenced

with an investigation into a family of cones rotating in an otherwise still fluid [3] using both

numerical and asymptotic methods, as is done here. The mathematical formulation of the

rotating-disk problem in axial flow is necessarily different to that for the rotating cone and

this motivates separate publication of the preliminary cone investigation in [4].

The transition of the boundary layer on the surface of rotating disks and cones has been

the subject of a number of experimental investigations. These were motivated by the desire

to understand transition to turbulence of crossflow vortices, present in three-dimensional

boundary layers. Although we are unaware of experimental investigations explicitly into

the vortex dynamics within boundary-layer flows over rotating disks placed in axial flow,

equivalent experimental investigations on broad cones (half-angle > 40◦) placed in axial

flow are extensive. Early experimental work on such cones was limited to measurements of

the transitional Reynolds numbers [5–8]. Following these, detailed flow visualizations and

hot-wire measurements by [9–11] demonstrated the existence of co-rotating spiral vortices

in the non-turbulent part of the boundary layer, which are fixed on the cone for all rotation

and axial flow rates. These vortices are identical to those observed on the disk rotating in

still fluid [12, 13] and on the rotating sphere [14]. Such vortices are known to arise from

type I (crossflow) and type II (streamline curvture) modes of instability. More recently, the

experimental investigations of Corke and co-workers [15–17] on disks rotating in otherwise

still fluid have shown that traveling modes can be important in the transition process over

smooth, clean disks.

Our interest in the rotating-disk boundary layer arises from the desire for completeness

in the series of papers on the family of rotating cones and also from industrial applications

in the electrochemical industry, in particular. Here flows arising from rotating disks are

present in types of chemical vapour deposition (CVD) reactors used for depositing thin films

of optical and electrical materials on substrates. Such reactors operate by forcing a carrier
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gas (containing the reactive molecules) onto the substrate held within a disk-like support

placed horizontally in the flow. The set-up is contained within a closed reactor and the

support is rotated to compensate for any non-uniformity of the incident flow. The gas flow

can be considered as a uniform axial flow incident on a rotating disk and it is desirable

that the flow close to the substrate be laminar and free from instability to ensure uniform

deposition. Although a large amount of literature exists on the theoretical and experimental

study of the reactor-flow parameters (see [18–20] and references contained therein), these are

concerned with the changes in the laminar-flow profiles that can be achieved and the affect

these have on deposition growth rates; no stability analyses exist for the flows in question. We

pay particular attention to [18] which considers a simple laminar-flow model that is closely

related to the basic flow used in the stability investigation presented here. Although the

temperature and compressibility of the carrier gas are important in the physical process of

deposition, and are indeed considered in [18] and all following laminar-flow investigations, the

incompressible study presented in this paper can be considered as a preliminary investigation

into how relevant instability analyses are to the design of CVD processes.

This paper is related to the theoretical investigations of Garrett & Peake [21], recently

revisited by the current authors [4], which consider the absolute instability of the boundary-

layer flows over a family of cones rotating within imposed axial flows. There the rotating disk

is considered as a special case of cone with half-angle 90◦. As can be seen in those papers,

the onset of absolute instability is sensitive to the imposed axial flow rate and the location

of onset is significantly delayed with increased flow. Absolute instability is not considered

further here.

The current paper begins with a description of the mathematical formulation of the prob-

lem in §2 and outlines the asymptotic stability analyses in §3. We subsequently proceed to

study the neutral curves for stationary modes of instability using complementary asymptotic

and numerical methods in §4. The asymptotic analysis for stationary modes is presented

in more detail in [22], while the numerical analysis is used to study the linear growth rates
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within the unstable regime. Traveling modes are subsequently studied in §5 using two dis-

tinct formulations. The first is in the rotating frame of reference and presents neutral curves

and growth rates for disturbances traveling at fixed frequencies, in an approach that is con-

sistent with, for example, Turkyilmazoglu and Gajjar’s work [23–25]. Both asymptotic and

numerical approaches are used. The asymptotic approach models traveling modes in axial

flow for the first time, and as such builds on the analyses in Hussain’s Ph.D. thesis [22] (still

fluid) and [23–25] (traveling modes). Meanwhile, the second formulation is in the inertial

(stationary) frame of reference and considers disturbances traveling at fixed phase speeds

with respect to the disk surface. This is related to Garrett’s recent numerical studies of

the rotating disk, cone and sphere boundary layers [26–28] where disturbances traveling at

around 75% of each body’s surface are found to be most amplified. This is consistent with

Kobayashi & Arai’s [29] experimental observation of slow vortices over rotating spheres un-

der particular conditions. In the analysis of stationary modes, identical neutral curves arise

in the two frames of reference. Furthermore, in the analysis of traveling modes, the two

formulations lead to neutral curves which must be compared at specific values of the local

Reynolds number. Following this approach, we observe excellent agreement for a range of

traveling modes in axial flow.

2 Formulation

The asymptotic and numerical investigations presented in this paper use slightly different

formulations. We give a summary of the formulation used in the asymptotic investigation

here and mention the amendments relevant to the formulation of the numerical investigations

at relevant points in the text.

Consider a rigid disk of infinite extent rotating about the z∗-axis which passes through

the center of the disk. The radial and azimuthal coordinates are x∗ and θ, respectively, which

rotate with the disk surface. The disk is placed in an incompressible fluid with oncoming
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axial flow aligned parallel to the z∗-axis at upstream infinity. At the edge of the boundary

layer the dimensional surface velocity distribution along the disk is given by the well-known

potential-flow solution U∗
0 (x∗) = C∗x∗, (see [30, 31] for example). Here C∗ is a scale factor

determined by the free-stream axial flow incident on the disk. Asterisks indicate dimensional

quantities. A diagram of the formulation can be seen in Figure 1 of [21] when setting the

half-angle to ψ = 90◦.

The non-dimensionalization of the asymptotic study follows that detailed in [3] when

ψ = 90◦, leading to the Reynolds number

R =
Ω∗l∗2

ν∗
. (1)

Here Ω∗ is the angular speed of rotation of the disk, l∗ is a characteristic length scale along

the disk surface and ν∗ is the kinematic viscosity of the fluid. Distances in the z∗-direction

are scaled on the boundary-layer thickness δ∗ = (ν∗/Ω∗)1/2, leading to the non-dimensional

variable ζ = z∗/δ∗. We note that the boundary-layer thickness is O(R−1/2). Note that this

scaling is different to that used in [18] and this is discussed in §6.

The basic steady flow over the disk has the form xU(ζ; Ts), xV (ζ; Ts) and R−1/2W (ζ; Ts)

in the radial, azimuthal and normal directions respectively, and these are determined by the

non-dimensional Navier–Stokes and continuity equations at leading order:

W ′ + 2U = 0, (2)

WU ′ + U2 − (V + 1)2 = T 2
s + U ′′, (3)

WV ′ + 2U(V + 1) = V ′′, (4)

subject to boundary conditions

U = 0, V = 0, W = 0, on ζ = 0,

U → Ts, V → −1, as ζ →∞. (5)
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Figure 1: Basic-flow profiles for Ts = 0, 0.05, 0.15 and 0.25 (arrow indicates direction of
increasing Ts).

A prime denotes differentiation with respect to ζ. The parameter Ts is the ratio of the local

slip velocity at a radial position to the rotational speed of the disk surface at that location:

Ts =
C∗x∗

Ω∗x∗
=

C∗

Ω∗ .

We note that in this geometry Ts is independent of x∗ and this simplifies the analysis for the

rotating disk; this is a crucial difference between this analysis and that of a rotating cone

in axial flow. Ts = 0 represents the disk rotating in otherwise still fluid and we recover the

familiar von Kármán equations [32].

Equations (2)–(4), subject to conditions (5), are solved using a fourth-order Runge–Kutta

integration method, in conjunction with a two-dimensional Newton–Raphson searching rou-

tine to iterate on the outer boundary conditions for different values of Ts. Figure 1 shows

the resulting mean-flow profiles for Ts = 0–0.25.
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3 Linear stability analysis

We consider type I and type II modes in order to derive estimates of the wavenumber

γδ∗ and waveangle φ of the resulting disturbances in the large Reynolds number limit. To

derive the linear disturbance equations we introduce small perturbations around the basic

flow which lead to governing equations independent of Ts and identical to those given by

equations (3.1)–(3.4) of [3]. The analysis of each basic-flow profile determined by Ts 6= 0

then proceeds in a similar way to that given in [1, 3, 22]. For this reason we focus on the

quantitative differences that arise in the analysis of Ts 6= 0 and present only a brief overview

of the methods used. The interested reader is referred to [1, 3, 22] for full details.

3.1 Inviscid type I modes

Physically, modes of type I are known to arise from an inflection point in the mean velocity

profiles and are inviscid in origin. To analyse these modes the disturbance wavelengths are

scaled on the boundary-layer thickness. A small parameter ε = R− 1
6 is introduced and we

define the perturbation velocities and pressure as functions of the wall-normal coordinate

z = ζε3, in the form

(ũ, ṽ, w̃, p̃) = (uA(z), vA(z), wA(z), pA(z)) exp
( i

ε3

{ ∫ x

αA(x, ε)dx + βA(ε)θ − εωAt
})

.

The disturbances associated with these perturbations are neutrally stable and hence αA

and βA are considered as real quantities. We proceed by expanding the radial and azimuthal

wavenumbers as well as the traveling mode frequency in the form

αA = α0 + εα1 + . . . ,

βA = β0 + εβ1 + . . . ,

ωA = ω0 + εω1 + . . . ,
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where the perturbation radial velocity in the inviscid layer is expanded as

uA = u0(ζ) + εu1(ζ) + . . . .

Similar expansions are used for vA, wA and pA, and the resulting perturbation equations are

solved at each order.

Consequently, for the first order eigenmodes, following [1], we observe the existence of

two layers; an inviscid layer of thickness O(ε3) and a viscous layer of thickness O(ε4) to

incorporate the no-slip condition at the wall, which is found by balancing convection and

diffusion terms in the disturbance equations. Subsequently, we proceed to match the leading-

order solution in the wall layer, using the wall-normal coordinate σ = ε−4z, to the first-order

solution in the inviscid layer to arrive at the following eignenrelation

w′(0)2Ai′(τ0)

γ
∫∞

τ0
Ai(s)ds

= 2
(
α0α1 +

β0β1

x2

)
I1 +

(α1

β0

− β1α0

β2
0

)
I2 + ω0Ī3. (6)

Here w is the leading-order Rayleigh eigenfunction, normalised such that its wall-gradient

w′(0) = 1. Furthermore, γ = [i(α0xU ′(0)+β0V
′(0))]1/3 and the integrals I1, I2 are defined and

calculated numerically in [1, 3, 22]. Meanwhile, the eigenrelation differs from the stationary

modes case only in the Airy function terms on the left-hand side, as well as the addition of

the third term on the right-hand side, which is observed also by [23] for traveling modes over

a rotating disk in still fluid. The wall layer normal coordinate is re-scaled to give τ = γσ+τ0,

where τ0 = −iω0/γ
2 and the integral, as defined in [24] for the still fluid problem, is

Ī3 =

∫ ∞

0

w2
0(θ)

¯̄U ′′(θ)
¯̄U2(θ)

dθ.

The effective velocity profile ¯̄U = α0xU + β0V is defined in [1, 3, 22]. In a similar fashion to

I2 in [1, 3, 22], Ī3 is calculated using numerical integration and the residue theorem due to

the singularity present at the location of the inviscid critical layer, where ¯̄U = ¯̄U ′′ = 0. The
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values of Ī3 corresponding to axial flows in the range Ts = 0–0.25 are given in the appendix.

3.2 Viscous type II modes

Physically, modes of type II are known to originate from viscous effects close to the disk

boundary. To analyse these modes we consider a triple-deck structure to be built on a small

parameter, now given by ε = R− 1
16 . The lower, main and upper decks have thicknesses of

order ε9, ε8 and ε4, respectively, and we define inner variables ξ, ζ, and Z to represent O(1)

variation within these decks. The wavenumbers are scaled upon a viscous length-scale, so

that the velocity and pressure perturbations become

(ũ, ṽ, w̃, p̃) = (uA(z), vA(z), wA(z), pA(z)) exp
( i

ε4

{ ∫ x

αA(x, ε)dx + βA(ε)θ − ε2ωAt
})

.

We proceed by expanding the radial and azimuthal wavenumbers as well as the frequency as

αA = α0 + ε2α1 + ε3α2 + . . . ,

βA = β0 + ε2β1 + ε3β2 + . . . ,

ωA = εω0 + ε2ω1 + ε3ω2 + . . . .

noting that the O(ε) terms in αA, βA are zero, while αi, βi are real quantities (where i =

0, 1, 2, . . .).

The solution for the first-order problem, which matches with the main deck, follows the

form of that found in [25] for the type II modes of a rotating disk in still fluid; the main

difference is the presence of the traveling mode frequency leading to an additional term in

ω0. This is manifest in the modified eigenrelation

γ2
0I3 +

iγ0β0U
′(0)

(β0 − α0xTs)2

(
1 +

V ′(0)2

U ′(0)2

)
I4 +

iγ0ω0∆
3
4

(β0 − α0xTs)2
I5

=
iγ0∆

1
2

(β0 − α0xTs)2
(α1xU ′(0) + β1V

′(0)), (7)
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where γ0 =
√

α2
0 + β2

0/x
2 is the leading order type II wavenumber and I3, I4 are numerical

integrals defined and calculated in [1, 3, 22]. The final integral on the left-hand side is also

calculated numerically and given by

I5 =

∫∞
0

θ2U(0, θ)dθ√
2U(0, 0)

= 1.347,

where U(0, θ) is the parabolic cylinder function defined in [33].

As discussed in [1,3,22], we investigate the boundary-layer structure by obtaining leading

order solutions in each of the decks. In the upper deck, disturbances decay exponentially,

whereas in the main deck we use the no-slip condition to argue that the effective wall shear

tends to zero as ζ → 0. This was experimentally observed by [13] for Ts = 0 and is

numerically verified in §4.2 for all Ts. The leading-order radial and azimuthal wavenumbers

are therefore chosen such that

α0U
′(0; Ts) +

β0

x
V ′(0; Ts) = 0. (8)

In the lower deck, the decay of the leading order solution is manifest in terms of the parabolic

cylinder function U(0,
√

2∆
1
4 ξ) through the balance of viscous and Coriolis forces, where

∆ =
i

2
(α0xU ′′(0) + β0V

′′(0))

= − iα0x

2
(1 + T 2

s ).

4 The analysis of stationary modes

4.1 Asymptotic analysis in the rotating frame

For both type I and type II modes, the asymptotic analyses for stationary modes corre-

spond directly to the lack of time-dependent terms in the linearised perturbation equations.
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Hence, the absence of the traveling mode frequency such that ωA = 0 leads to the simplifi-

cation of both the inviscid and viscous stability analyses. For type I modes, there is no need

to calculate the integral Ī3, whereas for type II modes, the integral I5 is not required; both

are eliminated from the process of solving eigenrelations (6,7), respectively.

Inviscid type I modes

As discussed in [3], estimates for γδ∗ and φ for vortices arising from the type I mode are

expressed as

γI
δ∗ =

(
αA

2 +
βA

2

x2

) 1
2

= γ0 +
(
α0α1 +

β0β1

x2

)
ε/γ0 + . . . ,

= AI
s −BI

sR
−1/3
L + . . . , (9)

and

tan
(π

2
− φI

)
=

αAx

βA

=
α0x

β0

+
(α1

β0

− β1α0

β2
0

)
xε + . . . ,

= CI
s + DI

sR
−1/3
L + . . . , (10)

where the numerical values of AI
s, BI

s , CI
s and DI

s are listed in Table 1. Note that γ2
0 = α2

0+
β2
0

x2

and RL = R1/2x is the Reynolds number based on the boundary-layer thickness (this removes

any dependence on the radial location x). Numerical values for some underlying quantities

are given in the appendix for comparison with those calculated by [1, 3, 22] when Ts = 0.
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Ts AI
s BI

s CI
s DI

s

0.00 1.162 8.314 4.256 16.535
0.05 1.224 8.476 3.932 12.710
0.10 1.294 8.817 3.561 9.449
0.15 1.369 9.252 3.203 6.984
0.20 1.445 9.755 2.879 5.200
0.25 1.522 10.335 2.596 3.918

Table 1: Numerical values for the asymptotic expansions of γI
δ∗ and φI in equations (9) and

(10), respectively.

Viscous type II modes

The analysis leads to the following estimates for the properties of the vortices arising

from type II instabilities:

γII
δ∗ =

(
αA

2 +
βA

2

x2

) 1
2
R− 1

4 ,

=

(
1 + V ′(0)2

U ′(0)2

) 3
4

∣∣∣1 + V ′(0)Ts

U ′(0)

∣∣∣

(U ′(0)I4

I3

) 1
2
x−

1
2 R− 1

4 + . . . ,

= AII
s R

− 1
2

L + . . . , (11)

and

tan
(π

2
− φII

)
=

αAx

βA

,

=
α0x

β0

+ ε2
(α1

β0

− β1α0

β2
0

)
x + . . . ,

= CII
s + DII

s R
− 1

4
L + . . . , (12)

where the numerical values of AII
s , CII

s and DII
s are listed in Table 2.
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Ts AII
s CII

s DII
s

0.00 1.225 1.207 2.312
0.05 1.323 1.222 2.249
0.10 1.438 1.231 2.164
0.15 1.571 1.232 2.060
0.20 1.720 1.224 1.939
0.25 1.884 1.207 1.809

Table 2: Numerical values for the asymptotic expansions of γII
δ∗ and φII in equations (11)

and (12), respectively.

4.2 Numerical analysis in the inertial frame

The numerical study uses the length scale provided by the boundary-layer thickness in

all spatial scalings and we consider the disk to be rotating in a fixed frame of reference. This

formulation is consistent with that discussed in the relevant sections of [3, 4, 21, 26–28] and

permits control of the speed at which vortices rotate with respect to the disk within the

analysis [34].

The mean flow is found by solving equations equivalent to (2)–(4) but with amendments

due to the different frame of reference. The governing disturbance equations are then formed

by perturbing the mean flow with quantities

(û, v̂, ŵ, p̂) = (u(ζ), v(ζ), w(ζ), p(ζ)) exp(i(αx + βRLθ − γt)).

The quantity α is complex and β and γ are real, as required by the spatial analysis used here.

It is assumed that β is O(1). As defined above, RL is the local Reynolds number that arises

from using the boundary-layer thickness as the length scale, whereas the non-dimensional

normal distance variable ζ is defined in the asymptotic analysis.

The governing perturbation equations in this formulation are identical to those given as

equations (4.2)–(4.7) in [3], and we see that the effect of Ts 6= 0 is to change the basic flow on

which the analysis is performed. The analysis on each basic flow is similar to that described

in [3] and interested readers are referred there for further information.
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Figure 2: Neutral-stability curves in terms of predicted wavenumber for Ts = 0, 0.05, 0.15
and 0.25 (a)–(d). Solid line: numerical, dashed line: asymptotic.

Neutral curves

We begin by explicitly assuming that the vortices rotate with the surface of the disk;

this involves fixing the disturbance phase velocity c = γ/β = 1. Spatial branches for each

Ts have been plotted by solving the dispersion relation for complex α = αr + iαi at fixed

RL by marching though values of γ = β. This approach has been denoted method 2 in [26].

At each Ts, two spatial branches are found to determine the instability of the flow, with

behavior similar to those shown in Figure 7 of [3]. These branches arise from crossflow (type

I) effects and streamline-curvature (type II) effects. The associated neutral curves (described

by αi = 0 at each RL) have two distinct lobes with the larger lobe, characterized by higher

wavenumbers, due to the type I instability, and the smaller lobe due to the type II instability.

The neutral curve calculated for Ts = 0 is identical to that calculated by [2].

Figures 2 and 3 show a comparison between the numerically calculated neutral curves and

asymptotic estimates at high Reynolds number, in terms of the wavenumber kδ =
√

α2 + β2

and waveangle ε = arctan(β/α) which are identified with the asymptotic quantities γδ∗ and φ,

respectively. We see excellent agreement between the numerical and asymptotic predictions
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Figure 3: Neutral-stability curves in terms of predicted waveangle for Ts = 0, 0.05, 0.15 and
0.25 (a)–(d). Solid line: numerical, dashed line: asymptotic.

of wavenumber and waveangle for both modes of instability, even though different frames of

reference and formulations have been used.

Figures 2 and 3 show that the type I mode remains the most dangerous (has lower

critical RL) for the values of Ts considered. However, as the axial flow rate is increased,

the type II mode becomes more important. Figure 4 shows the neutral curves in terms of

αr for Ts = 0–0.40, and we see that the type II mode has become the most dangerous by

Ts = 0.40. Physically, this behavior is to be expected as increasing the axial flow rate forces

fluid towards the disk surface and so any instability is more likely to develop from viscous

effects close to the wall location, rather than further up in the boundary layer. The type

II modes should therefore become dominant as Ts increases. Plots of the effective velocity

profile, Q(ζ; Φ, Ts) = U(ζ; Ts) cos(Φ) + V (ζ; Ts) sin(Φ), resolved at an angle from the radial

direction in the direction of rotation, Φ, show the presence of an inflection point at certain

values of Φ for all values of Ts (see Figure 5 for example). Hence the type I mode is expected

to exist at all axial flow rates, as is observed in Figure 4.

The asymptotic analysis assumes that the effective wall shear is zero along the lower (type
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II) branch. This assumption is not necessary in the numerical investigation and indeed we

are able to justify it using the numerical formulation. The effective wall shear along the

lower branch can be calculated from the values of αU ′(0; Ts) + βV ′(0; Ts) along the type

II branch of the numerical results. This quantity is identified with equation (8) from the

asymptotic investigation, and has been investigated for Ts = 0–0.40. We can confirm that

its value tends to zero as RL increases and is consistent with the equivalent calculation of [2]

for Ts = 0.

Linear amplification rates

We have so far shown that the critical Reynolds number for the type II mode is reduced

relative to the type I mode as the axial flow rate is increased. However, in order to better

understand the mode selection process in practice it is necessary to consider the linear growth

rates of both modes through the convectively unstable region. In doing this we follow the

analysis of [26] that considers linear growth rates within the rotating-disk boundary layer for

Ts = 0. That work has since been extended to the boundary-layer flows over the family of

rotating cones and spheres by [27,28] with a view to understanding the vortex-speed selection

process over smooth bodies (see §5).

In order to compare the effect of incident axial flow, the amplification rates over an equal

extent of RL are required. We have chosen to consider a region of extent of 215 in RL. This is

approximately the extent of the convectively unstable region for Ts = 0 until local absolute

instability is encountered at RA ≈ 507, as determined by [35, 36]. This is known to be

close to the experimentally observed onset of turbulence for (see [37] for example) and so for

comparison purposes can be interpreted as the extent of spiral vortices within the boundary

layer. However, recent investigation by [38] suggests that edge effects of the rotating disk

may contribute to the linear global instability of the flow, and that infinite rotating disks

may remain globally stable despite the existence of local absolute instability. Furthermore,

axial flow is known to significantly delay the onset of absolute instability and so potentially
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Figure 6: Linear convective growth rates for stationary disturbances at various Ts at a fixed
extent of 215 in RL into the convectively unstable region.

the onset of turbulence (see [4, 21]). Hence, a range of RL should be considered, and so to

facilitate the comparison an extent of 215 is used for all Ts > 0.

Figure 6 shows the amplification rates of stationary modes through a convective unstable

region of around 215 in RL from the onset of the type I mode in the range Ts = 0–0.25.

We see that the amplification rates are significantly reduced with axial flow and the type

II mode becomes increasingly important relative to the type I mode. For sufficiently high

axial flow rates the amplification rates of the type II mode is expected to become larger than

the type I mode and could be selected in practice. However investigations have showed that

this would be at rates far in excess of T = 0.40. Similar behavior has been found in the

rotating-sphere boundary layer in [28].

5 The analysis of traveling modes

As discussed in §1, the recent experimental investigations of Corke and co-workers, for

example, have shown that non-stationary modes can be important in the transition process
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over smooth disks. This is particularly relevant in the CVD application where highly polished

and clean surfaces are used. It is important to note that this experimental observation

is consistent with the theoretical investigations into the boundary-layer flow over a disk

rotating in otherwise still fluid due to Turkyilmazoglu and Gajjar [23–25]. There, results

are presented which demonstrate that disturbances arising from the type II mode moving

at different speeds relative to the disk surface can have considerably lower critical Reynolds

numbers than the stationary type I mode.

The stability of traveling disturbances for different values of Ts is considered here using

two distinct approaches. The first is consistent with the rotating-frame analyses in the

literature referred to above, and both numerical and asymptotic analyses are presented within

this frame. The second approach is via method 2 within the inertial frame, as discussed in

§4.2. Although it was possible to compare the rotating-frame asymptotic analysis with the

inertial-frame numerical analysis in §4.2, this was only because stationary disturbances were

being considered. The approaches in the different frames are inconsistent for traveling modes

and direct comparisons of the neutral curves are not possible.

5.1 Rotating-frame asymptotic analysis

We now consider the case of traveling modes of frequency ωA for type I and type II

disturbances. In both cases the stability analyses presented are similar to §4.1 for stationary

modes. However, the inclusion of time-dependence in the disturbance equations leads to

an additional terms in the eigenrelation for both the inviscid and viscous modes. These

distinguish the analyses from those presented in [22] for stationary modes and [23–25] for

traveling modes in still fluid.

Inviscid type I modes

The inviscid traveling mode analysis reveals the non-existence of time-dependent terms

in the leading order solution. As a result, we recover the leading-order estimates for the
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Ts BI
t DI

t BI
t DI

t BI
t DI

t BI
t DI

t

0.00 8.318 16.541 8.314 16.547 8.313 16.549 8.312 16.551
0.05 8.478 12.708 8.474 12.713 8.472 12.715 8.471 12.716
0.10 8.843 9.500 8.839 9.503 8.837 9.505 8.836 9.506
0.15 9.321 7.089 9.316 7.091 9.314 7.092 9.313 7.093
0.20 9.900 5.362 9.895 5.365 9.893 5.366 9.892 5.366
0.25 10.596 4.134 10.591 4.136 10.588 4.137 10.587 4.137

Table 3: First-order numerical values for the asymptotic expansions of γI
δ∗ and φI in equa-

tions (13,14), for x−2/3ω0 = −0.0001,−0.000862, 0.00017 and 0.000215 (left to right), which
correspond to ω = −5, 4, 7.9 and 10, respectively, at RL = 107

stationary type I modes, so that for any ωA 6= 0 the leading-order wavenumber AI
t = AI

s and

the leading-order waveangle CI
t = CI

s for varying axial flow strengths Ts; in the still fluid

case of the rotating disk, the same is observed by [24].

As in §3.1, we proceed to solve equation (6) for ω0 6= 0 and re-scale in terms of the

Reynolds number based on boundary-layer thickness RL. Hence, we arrive at the first-order

corrections for the type I wavenumber γI
δ∗ and waveangle φI , which are given by

γI
δ∗ = AI

t −BI
t R

−1/3
L + . . . , (13)

and

tan
(π

2
− φI

)
= CI

t + DI
t R

−1/3
L + . . . , (14)

where the numerical values of BI
t and DI

t are given in Table 3 for values of ωA corresponding

to numerical traveling-mode frequencies ω = −5, 4, 7.9 and 10 at RL = 107. (see §5.2 for a

definition of ω).

Viscous type II modes

In the upper and main decks, the analysis leads to equation (8), due to the requirement

of zero effective wall shear. Hence, at leading-order, the traveling mode solution for the
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Figure 7: Re-scaled leading-order wavenumber γ̄0 against the re-scaled frequency ω̄0 shown
for increasing axial flow Ts.

waveangle φII agrees with the stationary mode case, so that CII
t = CII

s . Qualitatively,

the effects of time-dependent terms in φII do not appear until the first-order problem is

considered within the lower deck.

We proceed to solve equation (7) for ω0 6= 0 to obtain estimates for the leading order

wavenumber and the first order waveangle. Comparing real and imaginary parts leads to the

following eigenrelation

aII ω̄0 + bII γ̄0

1
4 − γ̄0

9
4 = 0, (15)

where ω̄0 = ω0x
−1/8, γ̄0 = γ0x

1/2 and the coefficients

aII =

[
cos 3π

8
− sin 3π

8

]

(
1 + V ′(0)Ts

U ′(0)

)2

(V ′(0)

U ′(0)

) 3
4
(1 + T 2

s

2

) 3
4
(
1 +

V ′(0)2

U ′(0)2

) 5
8 I5

I3

,

bII =
U ′(0)(

1 + V ′(0)Ts

U ′(0)

)2

(
1 +

V ′(0)2

U ′(0)2

) 3
2 I4

I3

.
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Figure 8: Re-scaled first-order waveangle φ̄1 against the re-scaled frequency ω̄0 shown for
increasing axial flow Ts.

For a given re-scaled frequency ω̄0, the solution to equation (15) is shown in Figure 7, with

increasing axial flow having the effect of increasing the re-scaled leading-order wavenumber

γ̄0. Substituting this solution back into equation (7) leads to a corresponding eigenrelation

for the first-order waveangle in the form

φ̄1 = bII
1 (γ̄0

3
2 + aII

1 γ̄0
− 3

4 ω̄0), (16)

where φ̄1 = φ1x
−5/4 and the coefficients

aII
1 =

sin 3π
8(

1 + V ′(0)Ts

U ′(0)

)2

(V ′(0)

U ′(0)

) 3
4
(1 + T 2

s

2

) 3
4
(
1 +

V ′(0)2

U ′(0)2

) 5
8 I5

I3

,

bII
1 =

2I3

|U ′(0)V ′(0)| 12 (1 + T 2
s )

1
2

(
1 +

V ′(0)Ts

U ′(0)

)2(
1 +

V ′(0)2

U ′(0)2

)− 1
4
.

The solution to equation (16) is shown in Figure 8. For small positive ω̄0, increasing axial

flow has the effect of reducing the re-scaled first-order waveangle φ̄1, whereas for sufficiently

large and negative ω̄0, φ̄1 is increased. Furthermore, from Figures 7 and 8, it is clear that for
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Ts AII
t DII

t AII
t DII

t AII,2
t DII,2

t

0.00 1.542 1.211 0.826 3.902 0.074 16.024
0.05 1.657 1.201 0.908 3.729 0.072 16.465
0.10 1.790 1.185 1.009 3.511 0.068 17.042
0.15 1.942 1.161 1.129 3.260 0.062 17.684
0.20 2.110 1.127 1.266 2.993 0.056 18.356
0.25 2.291 1.083 1.419 2.722 0.050 18.973

Table 4: Leading-order numerical values for the asymptotic expansions of γII
δ∗ and φII in

equations (17,18) for ω̄0 = −0.667, 0.533 (left to right), which correspond to ω = −5, 4,
respectively, at RL = 107 (the final column is the second branch for ω̄0 = 0.533).

small positive values of ω̄0, a second type II mode exists, which has also been observed in [25]

for the type II traveling modes on a rotating disk in still fluid. We subsequently proceed to

follow §3.2, as the solutions to equations (15,16) result in the leading-order estimate for the

type II wavenumber γII
δ∗ and the first-order correction for the waveangle φII in the form

γII
δ∗ = AII

t R
−1/2
L + . . . , (17)

and

tan
(π

2
− φII

)
= CII

t + DII
t R

−1/4
L + . . . , (18)

where the values of AII
t and DII

t are given in Table 4 for values of ωA corresponding to

numerical frequencies ω = −5, 4 at RL = 107. The second branch is also presented for

ω = 4. (see §5.2 for a definition of ω).

5.2 Rotating-frame numerical analysis

We now present a numerical analysis conducted in the rotating frame of reference. The

formulation of the problem is slightly different to that presented in §4.2 in that Coriolis terms

appear at O(1/RL) in the perturbation equations and the azimuthal component of the basic

flow is modified so as to maintain the non-slip condition. The perturbation equations are not
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stated here, but are identical to those stated as equations (14) – (19) in [35]. To facilitate

comparisons with experiments where the frequency spectra of traveling disturbances are

studied explicitly (rather than vortex speeds observed), we work in terms of a dimensionless

frequency ω = γRL (see [15–17] for example).

We proceed to calculate neutral curves for fixed ω, which determines γ at each location

determined by RL. Enforcing ω > 0 is interpreted as analysing modes that travel at speeds

greater than the disk surface. However, the azimuthal wavenumber β is now a free parameter

and so this analysis differs from the inertial-frame analysis in that we are not fixing the phase

speed of disturbances.

This approach is entirely consistent with the theoretical investigation of [23] for Ts = 0,

and we use those results to validate the amended version of our code in this frame of reference.

Figure 9 shows neutral curves of the wavenumbers, waveangle and number of vortices n for

various ω that are identical to those shown in Figure 5 of [23]. In particular, for ω > 0 we

see the exaggeration of the lower lobe leading to lower critical Reynolds numbers for the

type II mode, and for sufficient ω < 0 the lower lobe is removed. We see that a globally

minimum critical Reynolds number of RL = 64.47 occurs for a type II mode when ω = 7.9.

This critical Reynolds number (and indeed all characteristics calculated for each ω) agree

with those of Turkyilmazoglu & Gajjar to the second decimal place. However, as discussed

in [3], our previous numerical and asymptotic analyses have failed to reproduce their “kink”

in the lower branch at very high RL.

That the type II mode is exaggerated for disturbances traveling more quickly than the disk

surface is consistent with the results of the inertial-frame analysis presented in §5.4, although

quantitative comparisons of neutral curves are not possible between the two formulations.

Figure 10 demonstrates the effect of increasing the enforced axial flow rate. As with the

stationary-mode analysis of §4.2, axial flow is seen to stabilise the flow to traveling modes

of both types. For each Ts, increasing ω is again seen to exaggerate the relative importance

of the type II mode such that it becomes the most dangerous. The value of ωmin,Ts which
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Figure 9: Neutral-stability curves calculated in the rotating frame for ω = 0 “−”; ω = 4
“−−”; ω = 7.9 “−.”; ω = 10 “· · ·”; ω = −5 “−” (Ts = 0).

gives the globally minimum critical Reynolds number is seen to increase slightly with Ts, in

particular ωmin,0.05 = 8.4, ωmin,0.15 = 10.1 and ωmin,0.25 = 11.9. Calculations of neutral curves

for stationary disturbances within the rotating frame (ω = 0) were found to be identical to

those calculated in the inertial-frame analysis of §4.2 for all Ts.

Linear amplification rates

As discussed in §4.2, it is instructive to consider the maximum linear growth rates in

each case. We continue by doing this in the rotating frame of reference for Ts = 0–0.25.

Figure 11 demonstrates that a traveling mode with ω = −16.5 is the most amplified in

the rotating frame of reference for Ts = 0. This corresponds to a mode traveling more slowly

that the disk surface, which is qualitatively consistent with the prediction of slowly traveling

vortices in the inertial frame. We also see that the type II mode becomes increasingly

important for ω > 0, which is again consistent with the results of the inertial-frame analysis.

Increasing ω to around 20 is sufficient for the type II mode to have the greater amplification

rate at Ts = 0. However, the critical Reynolds numbers for the onset of both of these modes
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Figure 10: Neutral-stability curves of traveling modes in the rotating frame for Ts = 0, 0.05,
0.15 and 0.25 (left to right).

are significantly higher than those that occur for |ω| closer to zero; this has implications for

the mode selection process as discussed in §6.

Investigation of traveling modes for Ts > 0 have shown that the frequency of the most

amplified mode reduces with Ts. For example, the most amplified mode (as sampled in the

latter part of the convectively unstable region prior to the onset of absolute instability) has

ω = −22.3 at Ts = 0.05.

5.3 Comparison between asymptotic and numerical results

In order to develop consistent comparisons for traveling modes between the asymptotic

analysis in §5.1 and the numerical formulation in §5.2, we must compare the respective

frequencies used in the normal mode expansions of both formulations.

For type I modes, ωAε−2 = ω. This leads to ωAx−2/3 = R
−2/3
L ω, where RL = R1/2x

and ε = R−1/6. Hence, at large displacement-thickness Reynolds numbers around O(107)

and O(1) values of the numerical frequency ω, small corresponding values of ωAx−2/3 are

required in order to achieve relevant comparisons. For example, for type I modes with
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Figure 11: Growth rates for Ts = 0 in the rotating frame for various ω.

numerical frequencies ω = −5 and 4, we require asymptotic frequencies ωAx−2/3 = −0.0001

and 0.0000862, respectively, in order to compare asymptotic and numerical results at the

specific displacement-thickness Reynolds number of RL = 107.

Similarly, for type II modes, we have ωAε−1 = ω. As a result, ωAx−1/8 = R
−1/8
L ω, where

RL = R1/2x and for the viscous modes ε = R−1/16. Therefore, for large Reynolds numbers

and O(1) numerical frequencies, again small corresponding values of ωAx−1/8 enable suitable

comparisons. For example, for type II modes with numerical frequencies ω = −5 and 4,

we require asymptotic frequencies ωAx−2/3 = −0.667 and 0.533, respectively, to facilitate

comparisons at RL = 107. Importantly, from Figures 7 and 8, we see that there exists no

traveling mode solutions for ωAx−2/3 > 0.7, which restricts the range of available comparisons

with the numerical results.

Figure 12 shows comparisons applicable at RL = 9× 104 (the highest value for which the

numerical code could obtain traveling mode results for all ω), at Ts = 0.25 and ω = −5, 2

and 4. We see excellent agreement for the effective wavenumber and waveangle predictions

of both mode types (where applicable). Although only these particular cases are shown here,

very similar comparisons were found at each Ts and ω. The slight discrepancy in the type
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Figure 12: Neutral-stability curves for Ts = 0.25 for traveling modes. Solid lines: numerical,
dashed lines: asymptotic.

I effective wavenumber predictions are expected to be a consequence of the relatively low

Reynolds number used.

5.4 Numerical analysis in the inertial frame

Full neutral curves and amplification rates for vortices traveling at particular speeds

relative to the rotating-disk surface can be computed by changing the value of c within the

method-2 analysis described in §4.2, i.e. within the inertial frame.

Disturbance speeds have been considered in the range c = 0.5–20 at each Ts and neutral

curves computed. Figures 13–15 present the neutral curves in terms of αr, n, kδ and ε for

c = 0.8, 5 and 20 together with the c = 1 results from §4.2. Note that c = 0.8 corresponds

to disturbances traveling at 80% of the disk surface speed, and c = 5 & 20 corresponds to

disturbances traveling at speeds much greater than the disk surface.

In each case we find that the globally critical Reynolds number for the type I mode is

given for stationary disturbances, c = 1. In addition, we find that the lobe arising from the

type II mode is sensitive to the disturbance speed. In particular, the type II lobe is quickly
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Figure 13: Neutral-stability curves for traveling mode disturbances for Ts = 0; c = 0.8“· · ·”;
c = 1“−”; c = 5“−.”; c = 20“−x”

eliminated for c < 1 and exaggerated for c > 1. In all cases where c > 1, the type II mode is

the more dangerous than in the type I mode in the sense of lowest critical Reynolds number.

Imposed axial flow appears to increase the sensitivity of the type II mode to disturbance

speed.

The result that traveling type II modes are the most dangerous (in the sense of lowest

critical RL) for all Ts is consistent with the previous theoretical results of §5.2. However,

it is important to note that the range of waveangles and vortex numbers predicted to be

unstable to traveling modes is extremely narrow, which is in a sense a stabilizing effect. The

narrow range of waveangles and vortex numbers appears to be a significant barrier to the

selection of quickly traveling modes.

How traveling modes are selected in practice is influenced by the amplification rates

within the convectively unstable region. Garrett’s previous analysis in [26] has shown that

traveling modes with phase speeds of c = 0.75 are the most amplified in zero axial flow.

Investigation of Ts > 0 shows that the phase speed of the most amplified mode increases

very slightly with Ts. For example, the most amplified mode (as sampled in the latter part
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Figure 14: Neutral-stability curves for traveling mode disturbances for Ts = 0.05; c =
0.8“· · ·”; c = 1“−”; c = 5“−.”; c = 20“−x”
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Figure 15: Neutral-stability curves for traveling mode disturbances for Ts = 0.15; c =
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of the convectively unstable region prior to the onset of absolute instability) remains at

c = 0.75 for Ts = 0.05 and is c = 0.76 for Ts = 0.15.

6 Conclusion

In this paper we have extended the work of [1, 2] by considering the theoretical effect of

enforcing a uniform axial flow onto the rotating-disk boundary layer. Both stationary and

traveling modes have been considered. This investigation is part of a series by the present

authors into the convective instability of the boundary layer over a family of rotating cones

placed both in and out of axial flow.

The introduction of axial flow necessarily affects the equations governing the basic flow.

For the rotating disk, all dependence on the radial position is removed leading to a modified

form of the von Kármán ordinary differential equations. This does not happen when axial

flow is incident on a rotating cone with ψ 6= 90◦, and the resulting analysis is different.

This crucial difference motivates separate publication of the two cases and a preliminary

Orr–Sommerfeld analysis of the rotating-cone boundary layer is presented in [4].

Stationary modes

We began by explicitly studying stationary modes of instability. This is consistent with

the existence of surface roughness on the disk (as would naturally occur in many practical

applications) which is known to select stationary vortices.

Increasing the axial flow rate is found to stabilize the rotating-disk boundary layer to

both type I and type II stationary modes of instability. This is evident from the increasingly

narrow range of waveangles predicted to be unstable in both the asymptotic and numerical

investigations, and also from the increasing critical Reynolds numbers at the onset of either

mode predicted by the numerical investigation. The numerical investigation also demon-

strates that both stationary instability modes are evident in the boundary layer for all axial



32

flow rates considered, and, although the type I mode is the most dangerous (in the sense

of lowest critical Reynolds number) for low rates of axial flow, the type II mode becomes

increasingly important with increased Ts, becoming most dangerous at some critical value

around 0.40. Axial flow is seen to reduce the amplification rates of stationary modes, con-

firming again that it has a stabilising effect. It also acts to increase the importance of the

type II mode relative to the type I mode. However, the type I mode is still the most amplified

for all Ts ≤ 0.40 considered here.

Physically, these results are to be expected as increasing the axial flow rate forces fluid

towards the disk surface and so instabilities are more likely to develop from viscous effects

close to the wall location.

The asymptotic analysis necessarily assumes that the effective wall shear is zero along

the type II branch, and we have been able to confirm this a posteriori at all Ts using the

numerical analysis. The asymptotic and numerical investigations have shown consistent

predictions of the wavenumber and waveangle of disturbances arising from both type I and

II modes, and excellent quantitative agreement has been found in all cases even though the

two problems were formulated in different frames of reference.

Traveling modes

In practical applications where highly polished, smooth disks are used (for example in

CVD reactors) non-stationary modes are known to occur in the boundary layer. The stability

of traveling modes was considered using two distinct formulations: The first used the rotating

frame of reference and allowed control of the disturbance frequency within the boundary-

layer flow (consistent with experiments of the type conducted by Corke and co-workers, for

example). The second used the inertial frame of reference and allowed control of the vortex

speed with respect to the disk surface (consistent with experiments of the type conducted by

Kohama & Arai on the rotating sphere). Although the two formulations are such that direct

quantitative comparisons of neutral curves are not possible, the main result that disturbances
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traveling more slowly than the disk surface are the most amplified is found in both cases.

Exactly what this means for vortex-speed selection over smooth disks is not clear cut since

the type I modes (which dominate the type II modes in all cases considered) were found

to have higher critical Reynolds numbers than their stationary counterpart. A balance is

therefore to be struck between the near-stationary modes that occur earlier in the unstable

region and the more amplified “slow” disturbances that occur later on. It is likely by the

point that the “slow” disturbances can arise, the near-stationary modes will have grown

sufficiently to remain the most dominant. This is a more subtle process than previously

proposed in [26].

As with stationary modes, enforced axial flow was seen to stabilise the boundary layer by

increasing the critical Reynolds numbers and also reducing the amplification rates of both

modes. It is also seen to increase the relative importance of the type II mode with respect

to the type I mode. However, the type I mode is still dominant for all Ts considered here.

Axial flow is seen to very slightly increase the phase speed of the most amplified traveling

mode, even though the frequency of the mode becomes increasingly negative with Ts.

CVD applications

The scalings used in this investigation are different to those presented by [18], who

investigate the laminar-flow profiles arising from an equivalent (but compressible) model

for CVD reactors. Specifically, their boundary-layer thickness is considered to be of or-

der
√

ν∗/(C∗ + Ω∗), which leads to two parameters appearing in their basic-flow equations:

R1 = Ω∗/(C∗+Ω∗) and R2 = C∗/(C∗+Ω∗). These parameters can be expressed in terms of

our single parameter as R1 = 1/(1+Ts) and R2 = Ts/(1+Ts). Their investigation considers

the deposition properties of the laminar flows in the regimes R1 = 0, R2 = 1 (equivalent to

Ts → ∞); R1 = 0.5, R2 = 0.5 (equivalent to Ts = 1) and R1 = 1, R2 = 0 (equivalent to

Ts = 0). In terms of these parameters, our investigation has R1 = 1 and R2 = Ts which is

consistent with their formulation when Ts << 1. Our analysis focuses on Ts ≤ 0.25 and we
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therefore conclude that the two analyses are consistent in this range. Our formulation has

the advantage that Ts does not appear in the perturbation equations and Reynolds number,

which greatly simplifies the stability analysis and interpretation of results. However, if we

were to consider large axial flow rates (relative to rotation rate) then the scalings used in [18]

would be more suitable and compressibility would also need to be considered.

Descriptions within [20] indicate that CVD reactor-flows can reach Reynolds numbers

of around R ∼ 104, which can be confirmed by noting that a typical length scale within a

reactor is around 10 cm and the substrate can be rotated at rates up to 1500 rpm. Our

results show that this Reynolds number is well within the unstable region for all values of

Ts considered. This clearly shows that the stability characteristics of any reactor-flow design

should be considered if the laminar flow is to remain in practice.

With regards the simple rotating-disk model of [18], their results indicate that the growth

rates of deposition increase with both axial flow rate and rotation rate. This is due to the

narrowing of the boundary layer which necessarily increases the concentration of reactive

molecules close to the substrate. Our work furthers this conclusion by suggesting that

increasing the axial flow rate is to be preferred as it may act to preserve the laminar flow over

a greater region of the support disk. However, the impact of compressibility and temperature

profiles needs to be considered in the stability analysis to comment further. It is not possible

to summarise previous investigations here, although the effect of wall-cooling or heating is

expected to be significant.
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A Values from the asymptotic analyses

Table 5 presents numerical values for some underlying quantities used in the asymp-

totic analysis. These are given so that comparisons can be made with equivalent quantities

calculated by [1, 3] when Ts = 0. The definitions of these quantities can be found in [1, 3].

Ts ζ̄ I1 I2 Ī3

0.00 1.458 0.0966 0.0582 + 0.0315i −4.4495 −1.0023i
0.05 1.394 0.0868 0.0710 + 0.0408i −4.4166 −1.0464i
0.10 1.326 0.0765 0.0902 + 0.0546i −4.3777 −1.0816i
0.15 1.260 0.0669 0.1153 + 0.0735i −4.3292 −1.1069i
0.20 1.198 0.0584 0.1466 + 0.0982i −4.2703 −1.1228i
0.25 1.140 0.0509 0.1843 + 0.1296i −4.2050 −1.1299i

Table 5: Numerical values of quantities used in the asymptotic analysis.
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