16 research outputs found

    Links between iron supply, marine productivity, sea surface temperature and CO2 over the last 1.1 Ma

    Get PDF
    Paleoclimatic reconstructions have provided a unique data set to test the sensitivity of climate system to changes in atmospheric CO2 concentrations. However, the mechanisms behind glacial/interglacial (G/IG) variations in atmospheric CO2 concentrations observed in the Antarctic ice cores are still not fully understood. Here we present a new multiproxy data set of sea surface temperatures (SST), dust and iron supply, and marine export productivity, from the marine sediment core PS2489-2/ODP Site 1090 located in the subantarctic Atlantic, that allow us to evaluate various hypotheses on the role of the Southern Ocean (SO) in modulating atmospheric CO2 concentrations back to 1.1 Ma. We show that Antarctic atmospheric temperatures are closely linked to changes in SO surface temperatures over the last 800 ka and use this to synchronize the timescales of our marine and the European Project for Ice Coring in Antarctica (EPICA) Dome C (EDC) records. The close correlation observed between iron inputs and marine export production over the entire interval implies that the process of iron fertilization of marine biota has been a recurrent process operating in the subantarctic region over the G/IG cycles of the last 1.1 Ma. However, our data suggest that marine productivity can only explain a fraction of atmospheric CO2 changes (up to around 40-50 ppmv), ccurring at glacial maxima in each glacial stage. In this sense, the good correlation of our SST record to the EDC temperature reconstruction suggests that the initial glacial CO2 decrease, as well as the change in the amplitude of the CO2 cycles observed around 400 ka, was most likely driven by physical processes, possibly related to changes in Antarctic sea ice extent, surface water stratification, and westerly winds position

    Climatic bisection of the last interglacial warm period in the Polar North Atlantic

    No full text
    New multiproxy marine data of the Eemian interglacial (MIS5e) from the Norwegian Sea manifest a cold event with near-glacial surface ocean summer temperatures (3–4 °C). This mid-Eemian cooling divided the otherwise relatively warm interglacial climate and was associated with widespread expansions of winter sea-ice and polar water masses due to changes in atmospheric circulation and ocean stability. While the data also verify a late rather than early last interglacial warm peak, which is in general disharmony with northern hemisphere insolation maximum and the regional climatic progression of the early Holocene, the cold event itself was likely instrumental for delaying the last interglacial climate development in the Polar North when compared with regions farther south. Such a ‘climatic decoupling’ of the Polar region may bear profound implications for the employment of Eemian conditions to help evaluate the present and future state of the Arctic cryosphere during a warming interglacial

    The emergence of modern sea ice cover in the Arctic Ocean

    Get PDF
    CITATION: Knies, J. et al. 2015. The emergence of modern sea ice cover in the Arctic Ocean. Nature Communications, 5, Article number: 5608, doi:10.1038/ncomms6608.The original publication is available at http://www.nature.com/ncommsArctic sea ice coverage is shrinking in response to global climate change and summer ice-free conditions in the Arctic Ocean are predicted by the end of the century. The validity of this prediction could potentially be tested through the reconstruction of the climate of the Pliocene epoch (5.33–2.58 million years ago), an analogue of a future warmer Earth. Here we show that, in the Eurasian sector of the Arctic Ocean, ice-free conditions prevailed in the early Pliocene until sea ice expanded from the central Arctic Ocean for the first time ca. 4 million years ago. Amplified by a rise in topography in several regions of the Arctic and enhanced freshening of the Arctic Ocean, sea ice expanded progressively in response to positive ice-albedo feedback mechanisms. Sea ice reached its modern winter maximum extension for the first time during the culmination of the Northern Hemisphere glaciation, ca. 2.6 million years ago.http://www.nature.com/articles/ncomms6608Publisher's versio
    corecore