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Assessing impacts of future anthropogenic carbon emissions is currently impeded by 22 

uncertainties in our knowledge of equilibrium climate sensitivity to atmospheric carbon 23 

dioxide doubling. Previous studies suggest 3 K as best estimate, 2–4.5 K as the 66% probability 24 

range, and non-zero probabilities for much higher values, the latter implying a small but 25 

significant chance of high-impact climate changes that would be difficult to avoid. Here, 26 

combining extensive sea and land surface temperature reconstructions from the Last Glacial 27 

Maximum with climate model simulations we estimate a lower median (2.3 K) and reduced 28 

uncertainty (1.7–2.6 K 66% probability). Assuming paleoclimatic constraints apply to the 29 

future as predicted by our model, these results imply lower probability of imminent extreme 30 

climatic change than previously thought. 31 

 32 

Climate sensitivity is the change in global mean surface air temperature SAT caused by 33 

an arbitrary perturbation F (radiative forcing) of Earth’s radiative balance at the top of the 34 

atmosphere with respect to a given reference state. The equilibrium climate sensitivity for a 35 

doubling of atmospheric carbon dioxide (CO2) concentrations (ECS2xC) from preindustrial times 36 

has been established as a well-defined standard measure (1). Moreover, because transient 37 

(disequilibrium) climate change and impacts on ecological and social systems typically scale 38 

with ECS2xC it is a useful and important diagnostic in climate modeling (1). Initial estimates of 39 

ECS2xC = 3±1.5 K suggested a large uncertainty (2), which has not been reduced in the last 32 40 

years despite considerable efforts (1-10). On the contrary, many recent studies suggest a small 41 

but significant possibility of very high (up to 10 K and higher) values for ECS2xC (3-10) implying 42 

extreme climate changes in the near future, which would be difficult to avoid. Efforts to use 43 

observations from the last 150 years to constrain the upper end of ECS2xC have met with limited 44 
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success, largely because of uncertainties associated with aerosol forcing and ocean heat uptake 45 

(8, 9). Data from the Last Glacial Maximum (LGM, 19-23,000 years ago) are particularly useful 46 

to estimate ECS2xC because large differences from pre-industrial climate and much lower 47 

atmospheric CO2 concentrations (185 ppm versus 280 ppm pre-industrial) provide a favorable 48 

signal-to-noise ratio, both radiative forcings and surface temperatures are relatively well 49 

constrained from extensive paleoclimate reconstructions and modeling (11-13), and climate 50 

during the LGM was close to equilibrium, avoiding uncertainties associated with transient ocean 51 

heat uptake.  52 

 Here we combine a climate model of intermediate complexity with syntheses of 53 

temperature reconstructions from the LGM to estimate ECS2xC using a Bayesian statistical 54 

approach. LGM, 2CO2 and pre-industrial control simulations are integrated for 2000 years 55 

using an ensemble of 47 versions of the University of Victoria (UVic) climate model (14) with 56 

different climate sensitivities ranging from ECS2xC = 0.3 to 8.3 K considering uncertainties in 57 

water vapor, lapse rate and cloud feedbacks on the outgoing infrared radiation (Fig. S1), as well 58 

as uncertainties in dust forcing and wind stress response. The LGM simulations include larger 59 

continental ice sheets, lower greenhouse gas concentrations, higher atmospheric dust levels (Fig. 60 

S2) and changes in the seasonal distribution of solar radiation (see SOM). We combine recent 61 

syntheses of global sea surface temperatures (SSTs) from the Multiproxy Approach for the 62 

Reconstruction of the Glacial Ocean (MARGO) project (12) and surface air temperatures over 63 

land based on pollen evidence (13), with additional data from ice sheets, land and ocean 64 

temperatures (SOM; all reconstructions include error estimates Fig. S3). The combined dataset 65 

covers over 26% of Earth’s surface (Fig. 1, top panel). 66 

Figure 2 compares reconstructed zonally averaged surface temperatures with model 67 
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results. Models with ECS2xC < 1.3 K underestimate the cooling at the LGM almost everywhere, 68 

particularly at mid latitudes and over Antarctica, whereas models with ECS2xC > 4.5 K 69 

overestimate the cooling almost everywhere, particularly at low latitudes. High sensitivity 70 

models (ECS2xC > 6.3 K) show a runaway effect resulting in a completely ice-covered planet. 71 

Once snow and ice cover reach a critical latitude, the positive ice-albedo feedback is larger than 72 

the negative feedback due to reduced longwave radiation (Planck feedback), triggering an 73 

irreversible transition (Fig. S4) (15). During the LGM Earth was covered by more ice and snow 74 

than it is today, but continental ice sheets did not extend equatorward of ~40°N/S, and the tropics 75 

and subtropics were ice free except at high altitudes. Our model thus suggests that large climate 76 

sensitivities (ECS2xC > 6 K) cannot be reconciled with paleoclimatic and geologic evidence, and 77 

hence should be assigned near-zero probability. 78 

 Posterior probability density functions (PDFs) of the climate sensitivity are calculated by 79 

Bayesian inference, using the likelihood of the observations Tobs given the model 80 

Tmod(ECS2xC) at the locations of the observations. The two are assumed to be related by an error 81 

term , Tobs = Tmod(ECS2xC) + , which represents errors in both the model (endogenously 82 

estimated separately for land and ocean) and the observations (Fig. S3), including spatial 83 

autocorrelation. A Gaussian likelihood function and an autocorrelation length scale of  = 2000 84 

km are assumed. The choice of the autocorrelation length scale is motivated by the model 85 

resolution and by residual analysis. (See sections 5 and 6 in the SOM for a full description of the 86 

statistical method, assumptions, and sensitivity tests.)  87 

 The resulting PDF (Fig. 3), considering both land and ocean reconstructions, is multi-88 

modal and displays a broad maximum with a double peak between 2 and 2.6 K, smaller local 89 

maxima around 2.8 K and 1.3 K and vanishing probabilities below 1 K and above 3.2 K. The 90 
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distribution has its mean and median at 2.2 K and 2.3 K, respectively and its 66% and 90% 91 

cumulative probability intervals are 1.7–2.6 K, and 1.4–2.8 K, respectively. Using only ocean 92 

data the PDF changes little, shifting towards slightly lower values (mean 2.1 K, median 2.2 K, 93 

66% 1.5 – 2.5 K, 90% 1.3 – 2.7 K), whereas using only land data leads to a much larger shift 94 

towards higher values (mean and median 3.4 K, 60% 2.8 – 4.1 K, 90% 2.2 – 4.6 K). 95 

The best-fitting model (ECS2xC = 2.4 K) reproduces well the reconstructed global mean 96 

cooling of 2.2 K (within two significant digits), as well as much of the meridional pattern of the 97 

zonally averaged temperature anomalies (correlation coefficient r = 0.8; Fig. 2). Significant 98 

discrepancies occur over Antarctica, where the model underestimates the observed cooling by 99 

almost 4 K, and between 45-50° in both hemispheres, where the model is also too warm. 100 

Simulated temperature changes over Antarctica show considerable spatial variations (Fig. 1), 101 

with larger cooling of more than 7 K over the West Antarctic Ice Sheet. The observations are 102 

located along a strong meridional gradient (Fig. S7). Zonally averaged cooling of air 103 

temperatures is about 7 K at 80S, more consistent with the reconstructions than the simulated 104 

temperature change at the locations of the observations. Underestimated ice sheet height at these 105 

locations could be a reason for the bias (16), as could be deficiencies of the simple energy 106 

balance atmospheric model component. Underestimated cooling at mid-latitudes for the best 107 

fitting model also points to systematic model problems, such as the neglect of wind or cloud 108 

changes. 109 

Two-dimensional features in the reconstructions are less well reproduced by the model (r 110 

= 0.5; Fig. 1). Large-scale patterns that are qualitatively captured  (Fig. 1) are stronger cooling 111 

over land than over the oceans, and more cooling at mid to high latitudes (except for sea ice 112 

covered oceans), which is contrasted by less cooling in the central Pacific and over the southern 113 
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hemisphere subtropical oceans. Continental cooling north of 40°N of 7.7 K predicted by the best-114 

fitting model is consistent with the independent estimate of 8.3±1 K from inverse ice-sheet 115 

modeling (17).  116 

Generally the model solution is much smoother than the reconstructions partly because of 117 

the simple diffusive energy balance atmospheric model component. The model does not simulate 118 

warmer surface temperatures anywhere, while the reconstructions show warming in the centers 119 

of the subtropical gyres, in parts of the northwest Pacific, Atlantic, and Alaska. It systematically 120 

underestimates cooling over land and overestimates cooling of the ocean (Fig. S8). The land-sea 121 

contrast, which is governed by less availability of water for evaporative cooling over land 122 

compared with the ocean (18), is therefore underestimated, consistent with the tension between 123 

the ECS2xC inferred from ocean only versus land only data (Fig. 3). A possible reason for this 124 

bias could be overestimated sea-to-land water vapor transport in the LGM model simulations 125 

perhaps due to too high moisture diffusivities. Other model simplifications such as neglecting 126 

changes in wind velocities and clouds or errors in surface albedo changes in the dynamic 127 

vegetation model component could also contribute to the discrepancies. The ratio between land 128 

and sea temperature change in the best-fitting model is 1.2, which is lower than the modern ratio 129 

of 1.5 found in observations and modeling studies (19). 130 

Despite these shortcomings, the best-fitting model is within the 1-error interval of the 131 

reconstructed temperature change in three quarters (75%, mostly over the oceans) of the global 132 

surface area covered by reconstructions (Fig. S8). The model provides data constrained estimates 133 

of global mean (including grid points not covered by data) cooling of near surface air 134 

temperatures SATLGM = –3.0 K (60% probability range [–2.1, –3.3], 90% [–1.7, –3.7]) and sea 135 

surface temperatures SSTLGM = –1.7 K (60% [–1.1, –1.8], 90% [–0.9, –2.1]) during the LGM 136 
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(including an increase of marine sea and air temperatures of 0.3 K and 0.47 K, respectively, due 137 

to 120 m sea-level lowering; otherwise SATLGM = –3.3 K, SSTLGM = –2.0 K). 138 

The ranges of 66% and 90% cumulative probability intervals as well as the mean and 139 

median ECS2xC values from our study are considerably lower than previous estimates. The most 140 

recent assessment report from the Intergovernmental Panel on Climate Change (6), for example, 141 

used a most likely value of 3.0 K and a likely range (66% probability) of 2–4.5 K, which was 142 

supported by other recent studies (1, 20-23).  143 

We propose three possible reasons why our study yields lower estimates of ECS2xC than 144 

previous work that also used LGM data. Firstly, the new reconstructions of LGM surface 145 

temperatures show less cooling than previous studies. Our best estimates for global mean 146 

(including grid points not covered by data) SAT and SST changes reported above are 30–40% 147 

smaller than previous estimates (21, 23). This is consistent with less cooling of tropical SSTs (–148 

1.5 K, 30°S–30°N) in the new reconstruction (12) compared with previous datasets (–2.7 K) 149 

(24). Tropical Atlantic SSTs between 20°S–20°N are estimated to be only 2.4 K colder during 150 

the LGM in the new reconstruction compared to 3 K used in (23), explaining part of the 151 

difference between their higher estimates of ECS2xC and SATLGM (–5.8 K).  152 

The second reason is limited spatial data coverage. A sensitivity test excluding data from 153 

the North Atlantic leads to more than 0.5 K lower ECS2xC estimates (SOM section 7, Figs. S14, 154 

S15). This shows that systematic biases can result from ignoring data outside selected regions as 155 

done in previous studies (22, 23) and implies that global data coverage is important for 156 

estimating ECS2xC. Averaging over all grid points in our model leads to a higher global mean 157 

temperature (SST over ocean, SAT over land) change (–2.6 K) than using only grid points where 158 

paleo data are available (–2.2 K), suggesting that the existing dataset is still spatially biased 159 
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towards low latitudes and/or oceans. Increased spatial coverage of climate reconstructions is 160 

therefore necessary in order to improve ECS2xC estimates. 161 

A third reason may be the neglect of dust radiative forcing in some previous LGM studies 162 

(21) despite ample evidence from the paleoenvironmental record that dust levels where much 163 

higher (25, 26). Sensitivity tests (Fig. 3, SOM section 7) show that dust forcing decreases the 164 

median ECS2xC by about 0.3 K. 165 

 Our estimated ECS2xC uncertainty interval is rather narrow, < 1.5 K for the 90% 166 

probability range, with most (~75%) of the probability mass between 2 and 3 K, which arises 167 

mostly from the SST constraint. This sharpness may imply that LGM SSTs are a strong physical 168 

constraint on ECS2xC. However, it could also be attributable to overconfidence arising from 169 

physical uncertainties not considered here, or from mis-specification of the statistical model. 170 

 To explore this, we conduct sensitivity experiments that perturb various physical and 171 

statistical assumptions (Figs. 3, S14, S15). The experiments collectively favor sensitivities 172 

between 1 and 3 K. However, we cannot exclude the possibility that the analysis is sensitive to 173 

uncertainties or statistical assumptions not considered here, and the underestimated land/sea 174 

contrast in the model, which leads to the difference between land and ocean based estimates of 175 

ECS2xC, remains an important caveat. 176 

Our uncertainty analysis is not complete and does not explicitly consider uncertainties in 177 

radiative forcing due to ice sheet extent or different vegetation distributions. Our limited model 178 

ensemble does not scan the full parameter range, neglecting, for example, possible variations in 179 

shortwave radiation due to clouds. Non-linear cloud feedbacks in different complex models 180 

make the relation between LGM and 2CO2 derived climate sensitivity more ambiguous than 181 

apparent in our simplified model ensemble (27). More work, in which these and other 182 
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uncertainties are considered, will be required for a more complete assessment.  183 

In summary, using a spatially extensive network of paleoclimate observations in 184 

combination with a climate model we find that climate sensitivities larger than 6 K are 185 

implausible, and that both the most likely value and the uncertainty range are smaller than 186 

previously thought. This demonstrates that paleoclimate data provide efficient constraints to 187 

reduce the uncertainty of future climate projections.  188 

 189 
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Figures: 332 

 333 

Figure 1. Annual mean surface temperature (sea surface temperature over oceans and near 334 

surface air temperature over land) change between the LGM and modern. Top: Reconstructions 335 

of sea surface temperatures from multiple proxies (12), surface air temperatures over land from 336 

pollen (13) and additional data (SOM). Bottom: Best-fitting model simulation (ECS2xC = 2.4 K).  337 

 338 
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339 
Figure 2. Zonally averaged surface temperature change between the LGM and modern. The 340 

black thick line denotes the climate reconstructions and grey shading the ±1, 2, and 3 K intervals 341 

around the observations. Modeled temperatures, averaged using only cells with reconstructions 342 

(see Fig. 1), are shown as colored lines labeled with the corresponding ECS2xC values. 343 
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 344 

Figure 3. Marginal posterior probability distributions for ECS2xC.  Upper:  estimated from land 345 

and ocean, land only, and ocean only temperature reconstructions using the standard assumptions 346 

(1  dust, 0  wind stress, 1  sea level correction of ΔSSTSL = 0.32 K, see SOM).  Lower:  347 

estimated under alternate assumptions about dust forcing, wind stress, and ΔSSTSL using land 348 

and ocean data. 349 


