34,038 research outputs found

    Giant electrocaloric effect around Tc_c

    Full text link
    We use molecular dynamics with a first-principles-based shell model potential to study the electrocaloric effect (ECE) in lithium niobate, LiNbO3_3, and find a giant electrocaloric effect along a line passing through the ferroelectric transition. With applied electric field, a line of maximum ECE passes through the zero field ferroelectric transition, continuing along a Widom line at high temperatures with increasing field, and along the instability that leads to homogeneous ferroelectric switching below TcT_c with an applied field antiparallel to the spontaneous polarization. This line is defined as the minimum in the inverse capacitance under applied electric field. We investigate the effects of pressure, temperature and applied electric field on the ECE. The behavior we observe in LiNbO3_3 should generally apply to ferroelectrics; we therefore suggest that the operating temperature for refrigeration and energy scavenging applications should be above the ferroelectric transition region to obtain large electrocaloric response. We find a relationship among TcT_c, the Widom line and homogeneous switching that should be universal among ferroelectrics, relaxors, multiferroics, and the same behavior should be found under applied magnetic fields in ferromagnets.Comment: 5 page

    Hypervelocity impact facility for simulating materials exposure to impact by space debris

    Get PDF
    As a result of man's venturing into space, the local debris contributed by his presence exceeds, at some orbital altitudes, that of the natural component. Man's contribution ranges from fuel residue to large derelect satellites that weigh many kilograms. Current debris models are able to predict the growth of the problem and suggest that spacecraft must employ armor or bumper shields for some orbital altitudes now, and that, the problem will become worse as a function of time. The practical upper limit to the velocity distribution is on the order of 40 km/s and is associated with the natural environment. The maximum velocity of the man-made component is in the 14-16 km/s range. The Long Duration Exposure Facility (LDEF) has verified that the 'high probability of impact' particles are in the microgram to milligram range. These particles can have significant effects on coatings, insulators, and thin metallic layers. The surface of thick materials becomes pitted and the local debris component is enhanced by ejecta from the debris spectrum in a controlled environment. The facility capability is discussed in terms of drive geometry, energetics, velocity distribution, diagnostics, and projectile/debris loading. The facility is currently being used to study impact phenomena on Space Station Freedom's solar array structure, other solar array materials, potential structural materials for use in the station, electrical breakdown in the space environment, and as a means of clarifying or duplicating the impact phenomena on the LDEF surfaces. The results of these experiments are described in terms of the mass/velocity distribution incident on selected samples, crater dynamics, and sample geometry

    TRECVID 2008 - goals, tasks, data, evaluation mechanisms and metrics

    Get PDF
    The TREC Video Retrieval Evaluation (TRECVID) 2008 is a TREC-style video analysis and retrieval evaluation, the goal of which remains to promote progress in content-based exploitation of digital video via open, metrics-based evaluation. Over the last 7 years this effort has yielded a better understanding of how systems can effectively accomplish such processing and how one can reliably benchmark their performance. In 2008, 77 teams (see Table 1) from various research organizations --- 24 from Asia, 39 from Europe, 13 from North America, and 1 from Australia --- participated in one or more of five tasks: high-level feature extraction, search (fully automatic, manually assisted, or interactive), pre-production video (rushes) summarization, copy detection, or surveillance event detection. The copy detection and surveillance event detection tasks are being run for the first time in TRECVID. This paper presents an overview of TRECVid in 2008

    Electronic properties of Fabre charge-transfer salts under various temperature and pressure conditions

    Get PDF
    Using density functional theory, we determine parameters of tight-binding Hamiltonians for a variety of Fabre charge transfer salts, focusing in particular on the effects of temperature and pressure. Besides relying on previously published crystal structures, we experimentally determine two new sets of structures; (TMTTF)2_2SbF6_6 at different temperatures and (TMTTF)2_2PF6_6 at various pressures. We find that a few trends in the electronic behavior can be connected to the complex phase diagram shown by these materials. Decreasing temperature and increasing pressure cause the systems to become more two-dimensional. We analyze the importance of correlations by considering an extended Hubbard model parameterized using Wannier orbital overlaps and show that while charge order is strongly activated by the inter-site Coulomb interaction, the magnetic order is only weakly enhanced. Both orders are suppressed when the effective pressure is increased.Comment: 12 pages, 16 figure

    Reexamining Black-Body Shifts for Hydrogenlike Ions

    Get PDF
    We investigate black-body induced energy shifts for low-lying levels of atomic systems, with a special emphasis on transitions used in current and planned high-precision experiments on atomic hydrogen and ionized helium. Fine-structure and Lamb-shift induced black-body shifts are found to increase with the square of the nuclear charge number, whereas black-body shifts due to virtual transitions decrease with increasing nuclear charge as the fourth power of the nuclear charge. We also investigate the decay width acquired by the ground state of atomic hydrogen, due to interaction with black-body photons. The corresponding width is due to an instability against excitation to higher excited atomic levels, and due to black-body induced ionization. These effects limit the lifetime of even the most fundamental, a priori absolutely stable, "asymptotic" state of atomic theory, namely the ground state of atomic hydrogen.Comment: 11 pages; LaTe

    Reported incidences and factors associated with percutaneous injuries and splash exposures among healthcare workers in Kahama District, Tanzania

    Get PDF
    Background: Percutaneous injuries and mucocutaneous blood and other body fluids exposure are among the common hospital hazards affecting health care workers (HCWs) worldwide. These exposures pose risks of contracting infections such as Hepatitis B and C and Human Immunodeficiency viruses. This study aimed to determine the incidence and human factors associated with percutaneous injuries and splash exposures among healthcare workers in Kahama District, Tanzania.Methods : This descriptive cross sectional study was conducted in Kahama District of north-western Tanzania and involved randomly selected healthcare workers. Structured self-administered questionnaire was used to collect data between July and October 2015.Results: A total of 277 HCWs participated in the study. Among them 146 (53%) were nurses, 138 (14%) auxiliary staff 36 (13%), 32 (12%) laboratory personnel and 25 (9%) were doctors. The mean age was 37.4 years. Seventy-one percent of the participants had more than 10 years’ of working experience. About 59% of participants reported incidences of percutaneous injuries and mucocutaneous blood and other fluids exposures. About 90% of participants agreed to experience the incidences several times. While 60% disagreed with availability of personal protective gears, non-reporting of the cases was noted by 26% of participants. Majority (81%) disagreed with existence of infection prevention and control (IPC) guidelines and protocols. The main human factors associated with the percutaneous injuries and splash exposures included HCWs experience at work (71%), long working hours (29%), type of workplace (48%) and inadequate use of IPC guidelines and protocols (48%).Conclusion: More than half of participants reported incidents of percutaneous injuries and mucocutaneous blood and other body fluids in Kahama District of Tanzania. Adherence to universal precautions, training and reduction of long working hours are necessary in order to reduce infections from percutaneous injuries and exposures

    Creation and manipulation of Feshbach resonances with radio-frequency radiation

    Full text link
    We present a simple technique for studying collisions of ultracold atoms in the presence of a magnetic field and radio-frequency radiation (rf). Resonant control of scattering properties can be achieved by using rf to couple a colliding pair of atoms to a bound state. We show, using the example of 6Li, that in some ranges of rf frequency and magnetic field this can be done without giving rise to losses. We also show that halo molecules of large spatial extent require much less rf power than deeply bound states. Another way to exert resonant control is with a set of rf-coupled bound states, linked to the colliding pair through the molecular interactions that give rise to magnetically tunable Feshbach resonances. This was recently demonstrated for 87Rb [Kaufman et al., Phys. Rev. A 80:050701(R), 2009]. We examine the underlying atomic and molecular physics which made this possible. Lastly, we consider the control that may be exerted over atomic collisions by placing atoms in superpositions of Zeeman states, and suggest that it could be useful where small changes in scattering length are required. We suggest other species for which rf and magnetic field control could together provide a useful tuning mechanism.Comment: 21 pages, 8 figures, submitted to New Journal of Physic

    The role of angular momentum in the construction of electromagnetic multipolar fields

    Get PDF
    Multipolar solutions of Maxwell's equations are used in many practical applications and are essential for the understanding of light-matter interactions at the fundamental level. Unlike the set of plane wave solutions of electromagnetic fields, the multipolar solutions do not share a standard derivation or notation. As a result, expressions originating from different derivations can be difficult to compare. Some of the derivations of the multipolar solutions do not explicitly show their relation to the angular momentum operators, thus hiding important properties of these solutions. In this article, the relation between two of the most common derivations of this set of solutions is explicitly shown and their relation to the angular momentum operators is exposed.Comment: 13 pages, 2 figure

    Euclidean Distances, soft and spectral Clustering on Weighted Graphs

    Get PDF
    We define a class of Euclidean distances on weighted graphs, enabling to perform thermodynamic soft graph clustering. The class can be constructed form the "raw coordinates" encountered in spectral clustering, and can be extended by means of higher-dimensional embeddings (Schoenberg transformations). Geographical flow data, properly conditioned, illustrate the procedure as well as visualization aspects.Comment: accepted for presentation (and further publication) at the ECML PKDD 2010 conferenc
    corecore