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Abstract. Multipolar solutions of Maxwell’s equations are used in many practical

applications and are essential for the understanding of light-matter interactions at the

fundamental level. Unlike the set of plane wave solutions of electromagnetic fields,

the multipolar solutions do not share a standard derivation or notation. As a result,

expressions originating from different derivations can be difficult to compare. Some of

the derivations of the multipolar solutions do not explicitly show their relation to the

angular momentum operators, thus hiding important properties of these solutions. In

this article, the relation between two of the most common derivations of this set of

solutions is explicitly shown and their relation to the angular momentum operators is

exposed.
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1. Introduction

The solution to Maxwell’s equations in homogeneous isotropic media is one of the most

studied problems in undergraduate physics. Often the problem is solved in Cartesian

coordinates and gives rise to the typical plane wave solutions of electromagnetic

fields. Although other solutions in different coordinate systems are not so widespread,

the multipolar fields arising from the use of spherical coordinates stand out due

to their use in several important problems in electromagnetism [1]. These sets of

electromagnetic fields play a very important role in the interaction of light with matter.

In particular, they are widely used to understand the atomic and molecular spectra

[2, 3]. More recently, the multipolar fields have found interesting applications in the

field of nanophotonics [4]. Probably the most successful application of this set of

solutions is the Mie scattering problem, which studies the interaction of electromagnetic

plane waves with spherical particles [5]. Mie theory provides one of the few analytical

solutions of the inhomogeneous Maxwell’s equations. This theory generalizes Rayleigh

scattering, which accounts for the colour of the sky, to particles of any size. For all

these reasons, the multipolar fields appear in almost all undergraduate textbooks and

in a long range of specialized books. Unfortunately, the multipolar fields do not share

the structural simplicity of the plane wave solution. This fact translates into a myriad

of different representations for the multipolar solutions. Different books use notations

and derivations which are so dissimilar that the study of these solutions can be difficult.

More importantly, some of the standard derivations hide the beautiful symmetry of the

multipolar fields and can prevent a deeper understanding of the underlying physics, i.e.

the angular momentum of light.

In this article we would like to present the most common derivations of the

multipolar fields and how the different notations are related. This exercise usually

requires a significant amount of algebra and is rather cumbersome [6]. Here, we will

show that an insightful understanding of the role of the angular momentum operator

in electromagnetism and the proper use of some of its properties significantly simplifies

the calculations. With this new understanding, the multipolar solutions become much

clearer and can be used in physical problems with a new point of view.

The remainder of the article is organized as follows: In section 2 the problem is

outlined, along with two common derivations of the multipolar solutions. By making

use of the orbital angular momentum operator, the correspondence between these two

sets of solutions is discussed in section 3. Finally, section 4 concludes the work with a

summary and outlook.

2. Multipolar fields

Let us start by reviewing the multipolar solutions to Maxwell’s equations for source-

free homogeneous and isotropic media. We consider monochromatic electric, E , and
magnetic, H, fields, i.e. E = ℜe{E exp(−iωt)} and similarly for the magnetic field
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H = ℜe{H exp(−iωt)}, where the vectors E and H follow Maxwell’s equations and

therefore the resulting vector wave equations

∇2E+ k2E = 0, ∇2H+ k2H = 0, (1)

with k =
√
ǫµω, have zero divergence

∇ · E = 0, ∇ ·H = 0, (2)

and are interrelated:

∇× E = iωµH, ∇×H = −iωǫE. (3)

Here ǫ = ǫ0ǫr, where ǫ0 and ǫr are the vacuum and relative permittivity, respectively,

and similarly µ = µ0µr, where µ0 and µr are the vacuum and relative permeability.

Multipolar fields are solutions of the above equations in spherical coordinates. They

may be chosen to be simultaneously eigenfunctions of the squared angular momentum

of the radiation field, a component of the angular momentum on one of the coordinate

axes (here, the z-axis is chosen), and of the parity operator. The multipolar fields are

often used as basis functions, into which electromagnetic fields can be decomposed [7].

Specification of the weights in such a multipolar expansion allows the description of

electromagnetic fields.

2.1. Derivation of the multipolar solutions of Maxwell’s equations

One can find several expressions for the multipolar solutions of Maxwell’s equations in

the literature, but they are typically derived in two different ways. The first one uses

a well-known recipe for deriving the solution of (1),(2) in a medium free of charges [8].

This recipe is applicable to different coordinate systems that meet certain conditions

[8], and consists in using the following fields:

M ≡ ∇× (uτ), N ≡ ∇×M

k
, (4)

where u is a unit vector in the symmetric direction and τ is a scalar function expressed

in the appropiate system of coordinates. This scalar function τ can be written as

τ = w(χ)ψ, where χ is the coordinate associated with the available symmetry and

w(χ) = {1, χ} depending on the problem; ψ is a solution of the scalar Helmholtz

equation in the chosen system of coordinates. If all these conditions are fulfilled, the

vector fields M and N are solutions of Maxwell’s equations showing the appropriate

symmetries.

In the case of the multipolar solutions, the system of coordinates is spherical, the

unit vector points in the radial direction, u = r̂, and w(r) = r. This approach is

typically found in Mie theory related literature [7] as well as in some electromagnetism

textbooks [4, 9, 10]. We will refer to this method as the “general method,” since it may

also be used to obtain solutions in other geometries.

Another way of deriving the multipolar solutions of Maxwell’s equations uses the

fact that these solutions have to be eigenvectors of the angular momentum operator.



The role of angular momentum in the construction of multipolar fields 4

Hence, the solution can be built from the rules of addition of the angular momentum

operator. This construction is detailed in the books by Rose [11, 12]. In this method,

the multipole solutions are explicitly shown to be eigenvectors of the angular momentum

operator, a fact that is typically overlooked in many books about Mie theory. We will

refer to this method as the “angular momentum method,” as it explicitly makes use of

the angular momentum operator properties.

The diametrically different construction methods of the multipole solutions may

lead to some confusion due to several factors. On the one hand, as we will see

immediately, both methods naturally give rise to different notations, which are rather

cumbersome to reconcile [6]. Then, one may be tempted to think that the different

multipole notations belong to different classes of solutions when in reality they represent

the same object. On the other hand, the derivation of the multipolar solutions without

making use of their role as eigenvectors of the angular momentum operators hides

some important properties of this set of solutions. For example, it is often difficult

to understand the relation between the different resonances in Mie scattering and the

angular momentum of the field and/or the particle. In this paper, we will try to solve

this problem once and for all and show how the two construction methods are related.

2.2. General method

As mentioned before, the general method is based on (4). The scalar function τ is one

of the solutions of the scalar Helmholtz equation in spherical coordinates multiplied by

the radial coordinate (τ = rψ), and the unit vector is oriented along the radial direction

(u = r̂). Our notation closely follows that of Bohren and Huffman [7], which is very

common in Mie theory books. Note, however, that we distinguish different modes with

the indices M and L, instead of the m and n that are used in the reference. The choice

for this trivial change will become clear in the following sections. Using (4), we define

a set of solutions {MeML,MoML,NeML,NoML}, which are determined by the scalar

functions ψeML = cos(Mφ)PM
L (cos(θ))zL(kr) and ψoML = sin(Mφ)PM

L (cos(θ))zL(kr).

Here, as in the rest of the article, (r, θ, φ) are the spherical coordinates (φ being the

azimuthal angle). The radial function zL(kr) can be either a spherical Bessel function

or spherical Hankel function. Within the general method the indices M,L are non-

negative integers and L ≥ M . As required by the recipe of (4), the functions ψoML

and ψeML fulfill the scalar Helmholtz equation in spherical coordinates. The definitions

required to construct the complete form of the solutions {MeML,MoML,NeML,NoML}
can be found in the appendix. As an example,

MoML =
M

sin(θ)
cos(Mφ)PM

L (cos(θ))zL(kr)êθ − sin(Mφ)
dPM

L (cos(θ))

dθ
zL(kr)êφ, (5)

where êθ and êφ are the polar and azimuthal unit vectors.

Note that there are two different sets of M and N solutions labeled with either

o (odd) or e (even), and they differ in the azimuthal behaviour of the scalar function

ψ, oscillating as a sine or a cosine, respectively. The main difference between these
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multipolar fields and those given by Jackson [1] is that instead of sinusoidal functions,

the author uses complex exponential functions.

2.3. Angular momentum method

As mentioned earlier, the general method does not make use of the fact that the

multipolar solutions should have a well defined relation with the angular momentum

operator.‡ However, one can derive the multipolar solutions by directly imposing that

they should be eigenvectors of the angular momentum operator. We will follow the

notation by Rose [11, 12]. First we start by noting that the angular momentum operator

(J) for a vectorial field is composed of two terms: the orbital angular momentum

L = −i(r×∇) and the spin angular momentum S, i.e. J = L+S. In this article, we use

dimensionless angular momentum operators, as in the references cited [1, 11, 12]. The

angular momentum operator so defined is the generator of rotations for the vectorial

electromagnetic field. It is also related to the density of electromagnetic angular

momentum of the field (i.e. m = ℜe{r × E × H∗}). The interested reader can find

more details about these subtleties in the given literature.

We should now impose that the multipolar vector fields are eigenvectors of J2 and

Jz. We can start constructing these solutions by composing the eigenfunctions of both

L and S. The eigenfunctions of L2 and Lz are the spherical harmonic scalar functions

(Y M
L (θ, φ)):

L2Y M
L = L(L+ 1)Y M

L , LzY
M
L =MY M

L . (6)

Note that the above equations can be considered as the definition for the spherical

harmonics as they are a set of partial differential equations. On the other hand,

the eigenfunctions of S2 and Sz are the vectors ξ+1 = −(x̂ + iŷ)/
√
2, ξ0 = ẑ, and

ξ−1 = (x̂− iŷ)/
√
2:

S2ξµ = 2ξµ, Szξµ = µξµ. (7)

We then construct the multipolar vector functions TJLM by combining the scalar

eigenfunctions (Y M+µ
L ) and the vector eigenfunctions (ξ−µ), using the rules of angular

momentum addition. A simple product of the scalar and vector eigenfunctions,

Y M+µ
L ξ−µ, remains an eigenfunction of the orbital and spin angular momentum

operators. However, it does not have the required properties with regard to the squared

total angular momentum operator, J2. In order to create eigenfunctions of the squared

total angular momentum operator, one has to combine the separate eigenfunctions with

the aid of the Clebsch-Gordan coefficients:

TJLM =

µ=+1
∑

µ=−1

C(1LJ ;−µ,M + µ)Y M+µ
L (θ, φ)ξ−µ, (8)

‡ Of course, the angular momentum content of the multipolar solutions can always be calculated and

gives the expected result [1].
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where C(abc; d, e) denotes the well-known Clebsch-Gordan coefficients, which we have

explicitly written in the appendix. Note thatTJLM is an eigenfunction of Jz, because the

three terms in the sum above (µ = −1, 0,+1) combine eigenfunctions with Lz =M + µ

and Sz = −µ, always summing Jz = Lz + Sz = M . Hence, in this notation M has

become the eigenvalue of the z-component of the total angular momentum operator.

Furthermore, the weights of the three components in the sum are the Clebsch-Gordan

coefficients, which are exactly calculated so that the total angular momentum fulfills

J2TJLM = J(J + 1)TJLM . In summary, the vector functions TJLM are eigenvectors of

both J2 and Jz, but also of L2 and S2. They are often referred to as vector spherical

harmonics and are also used by Jackson [1], even though the derivation in this reference

is different. A further noteworthy property of these vector spherical harmonics is that

they are orthonormal on the surface of a unit sphere.

The electric and magnetic multipolar solutions can be derived from the vector

spherical harmonics in (8). The addition rules for angular momenta impose that for a

fixed J , the orbital angular momentum L can only take three values: J−1, J , and J+1.

To proceed, we can make use of the fact that the multipolar fields are also required to be

eigenvectors of the parity operator, P. This means that they are invariant under point

inversions (r → −r), except for possibly an overall phase difference. The parity of TJLM

is determined by that of the scalar spherical harmonics Y M+µ
L , which is (−1)L. Then,

to ensure that the fields are eigenfunctions of the parity operator, only terms with equal

parity can be combined, i.e. the solution with L = J must remain separate, while those

with L = J±1 can be mixed. The multipoles are classified as electric or magnetic poles

according to their parity: If A has parity (−1)J , then it is a 2J pole magnetic field, and

in the case of A with parity (−1)J+1 it is a 2J pole electric field. For this reason, the

magnetic multipole vector potential can only be composed from a term with J = L.

The vector functions used are therefore

TLLM =
∑

µ

C(1LL;−µ,M + µ)Y M+µ
L (θ, φ)ξ−µ. (9)

Then, in order to obtain the vector potential for the magnetic multipole field, TLLM

has to be multiplied by a spherical Bessel or Hankel function:

ALM(m) = CL(m)zL(kr)TLLM . (10)

CL(m) is a normalization factor, which is set to -1 in [12]. Now it is very easy to obtain

the electric multipoles by using (3) or the symmetries between the electric and magnetic

fields.

By construction, the electromagnetic fields with this shape are eigenvectors of the

angular momentum operators. Now, having followed the two derivations, it is unclear

how the fields obtained by the general method are related to the ones from the angular

momentum method. The final expressions for the fields from the general method (see

for example (5)), which are typically given in terms of spherical unit vectors, have a

dissimilar presentation to those from the angular momentum method (e.g. (10)). As an

illustration of the difference in appearance between the two sets of solutions, the squared
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modulus of each component of the field {L,M} = {3, 3} on a spherical surface is shown

in figure 1. Comparing the corresponding field components from the two formalisms, it is

evident that there is a difference in both azimuthal dependence and magnitude between

the fields. In order to determine the relationship between the two sets of solutions, one

could use a brute force approach to calculate the angular momentum of the fields of

the general method and to calculate the conversion factors from one field to the other

[6]. Here, we will present a different method by using the properties of the angular

momentum operators.

Figure 1. (Colour online) Squared modulus of the x- ((a),(d)), y- ((b),(e)), and z-

((c),(f)) component of the multipole field with indices {3, 3} on a spherical surface in

each formalism. Top row: Mo33 from the general method. Bottom row: E33(m) from

the angular momentum method.

3. Correspondence between fields

3.1. Properties of the angular momentum operator

We will start by reviewing some of the properties of the angular momentum operator,

which we will use later. The angular momentum operator is a vector differential operator

that can be written in the form:

L = − i(r×∇) (11)
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= Lxx̂+ Lyŷ + Lzẑ (12)

= − L+1ξ−1 + Lzξ0 − L−1ξ+1. (13)

Note that (11) is very similar to the quantum mechanical angular momentum operator,

normalized by ~, i.e. L = r × p/~. The linear momentum is written in its differential

form p = −i~∇. Equation (13) can be easily verified with the form of the vectors ξµ
and using the so-called ladder operators:

L+1 = − 1√
2
(Lx + iLy)

L−1 =
1√
2
(Lx − iLy). (14)

(15)

From the theory of angular momentum it can be shown that, when applied to

spherical harmonics, the ladder operators have the following effect:

L+1Y
M
L = −

√

(L−M)(L +M + 1)

2
Y M+1
L

L−1Y
M
L =

√

(L+M)(L−M + 1)

2
Y M−1
L , (16)

and indeed they can be used to obtain the relations between spherical harmonics of

different orders and their explicit shape.

The final property of the angular momentum operator that we will make use of is

that as the generator of rotations, the operator does not affect the radial components

of the fields. This property is very easy to verify by writing the angular momentum in

radial coordinates or by observing that (16) operate on the spherical harmonics, which

are purely angular functions (they contain no radial component).

3.2. Rewriting the general method

Now we can turn to the general method again and observe that the fields M can be

rewritten in the following form:

MoML = ∇× (rψoML) = −r× (∇ψoML) = −iLψoML, (17)

and similarly for the even fields, i.e. MeML = −iLψeML. The second equality in (17)

can be obtained from the commutation relations between r and p or directly by checking

terms of the kind y∂/∂z − z∂/∂y = −(∂/∂y z − ∂/∂z y).

Finally, from the explicit expression of the spherical harmonics, which is given in

the appendix, it can be shown that ψeML + iψoML ∝ Y M
L zL(kr) and ψeML − iψoML ∝

Y −M
L zL(kr). Using this and the properties of the angular momentum operator given

above, we can combine the fields M in the following way:

MeML ± iMoML = −i(∓1)(M)

√

4π

2L+ 1

(L+M)!

(L−M)!
zL(kr)LY

±M
L (θ, φ)
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= − izL(kr)(∓1)(M)

√

4π

2L+ 1

(L+M)!

(L−M)!

(−L+1ξ−1 + Lzξ0 − L−1ξ+1)Y
±M
L (θ, φ), (18)

which now can be cast as a sum of different spherical harmonics by using (16):

MeML ± iMoML = − izL(kr)(∓1)M

√

4π

2L+ 1

(L+M)!

(L−M)!
[
√

(L∓M)(L±M + 1)

2
Y ±M+1
L (θ, φ)ξ−1 ±MY ±M

L (θ, φ)ξ0

−
√

(L±M)(L ∓M + 1)

2
Y ±M−1
L (θ, φ)ξ+1

]

. (19)

Thus, we have been able to easily write the M fields of the general method as a

superposition of products of angular momentum eigenstates, similarly as in the angular

momentum method. Now it is just a matter of comparing the factors in (19), obtained

through the use of ladder operators, with (9) and (A.11)–(A.13) and noting that they

are the same, except for a common factor §, i.e.

MeML ± iMoML = i(∓1)M

√

L(L+ 1)4π

(2L+ 1)

(L+M)!

(L−M)!
zL(kr)TLL±M , (20)

which gives us the desired relationship between the two methods. Let us consider (20)

in more detail. The constant factor on the right hand side is due to the difference in

magnitude between the two sets of solutions. Based on properties of TLL±M established

in section 2.3, (20) clearly shows that MeML ± iMoML is also an eigenfunction of the

operators J2, Jz, and P. Conversely, note that the modes resulting from the general

method, i.e. {MeML,MoML,NeML,NoML} are eigenvectors of J2 and P , but not of

Jz. This is reflected by the difference in azimuthal dependence between the two sets of

solutions, visible in figure 1, which is accounted for by the use a linear combination of M

fields in (20). Note that the need for this linear combination stems from the particular

choice of φ-dependent functions during the solution of the scalar Helmholtz equation in

the derivation of the fields from the general method. If complex exponential functions

were chosen instead of the sinusoidal functions, the fields derived by the two methods

would be directly proportional to each other.

We could similarly derive another relation for the N fields, but it is easier to use

that N = (∇×M)/k and H = −i(∇× E)/k ‖, as will be evident from the conversion

tables below.

§ That they are the same is not a lucky coincidence. The Clebsch-Gordan coefficients are precisely

derived by using the angular momentum ladder operators.
‖ In [11] and [12] Gaussian units are used.
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3.3. Conversion tables

We can now present the whole conversion tables between the electric and magnetic

multipoles from Rose’s books (denoted by (e) and (m), respectively) and the M and N

fields from the general method used in Mie theory. It is important to emphasize that

L(L + 1) and M represent the eigenvalues of the square and z-component of the total

angular momentum operator, J. The vector potential can then be written as:

ALM(m) = i(−1)M

(sign(M))M
√

L(L+1)

√

2L+1
4π

(L−|M |)!
(L+|M |)!(Me|M |L + i sign(M)Mo|M |L)

ALM(e) = (−1)M

(sign(M))M
√

L(L+1)

√

2L+1
4π

(L−|M |)!
(L+|M |)!(Ne|M |L + i sign(M)No|M |L).

(21)

And for the electric and magnetic fields:

ELM(m) = −HLM(e) = (−1)M+1k

(sign(M))M
√

L(L+1)

√

2L+1
4π

(L−|M |)!
(L+|M |)!(Me|M |L + i sign(M)Mo|M |L)

HLM(m) = ELM(e) = i(−1)Mk

(sign(M))M
√

L(L+1)

√

2L+1
4π

(L−|M |)!
(L+|M |)!(Ne|M |L + i sign(M)No|M |L).

(22)

3.4. Application to a plane wave

As previously mentioned, the plane wave solution is very commonly used in

electromagnetism. A physical problem that ties together the use of multipolar fields

and plane waves is Mie scattering. The incident field is a plane wave, but due to the

symmetry of the spherical scatterer it is convenient to treat the problem using multipole

expansions, which necessitates the decomposition of the incident plane wave in terms of

the multipolar fields. In the following, we demonstrate the use of the above conversion

tables for the case of a plane wave. To convert between the two representations, we

can use (21) on the plane wave decomposition given in [11] to obtain the corresponding

expansion in terms of {MeML,MoML,NeML,NoML}. In [11], the plane wave expansion

is given as

Apw =
√
2π

∞
∑

L=1

iL
√

(2L+ 1)(ALp(m) + ipALp(e)), (23)

where the vector potential for a plane wave is Apw = upe
ikz and up = 1√

2
(x̂ + ipŷ),

p = ±1. Choosing 1√
2
(u1 + u−1) to obtain a plane wave with polarization in the x

direction, and applying (21) yields

Apw =
√
π

∞
∑

L=1

iL
√

(2L+ 1)(AL1(m) + iAL1(e) +AL−1(m)− iAL−1(e))

=
√
π

∞
∑

L=1

iL
√

(2L+ 1)
1

√

L(L+ 1)

√

2L+ 1

4π

1

(L+ 1)L

[−i(Me1L + iMo1L)− i(Ne1L + iNo1L) + i(Me1L − iMo1L)− i(Ne1L − iNo1L)]

=

∞
∑

L=1

iL
2L+ 1

L(L+ 1)
(Mo1L − iNe1L). (24)



The role of angular momentum in the construction of multipolar fields 11

The difference between these expansions is illustrated in figure 2, which depicts the

weights of the first few basis functions with index {L,±1} in the representation from

the angular momentum method, and {1, L} in that from the general method.

Figure 2. (Colour online) Complex weights of the first basis functions in the multipole

expansion of a plane wave. (a) Vector potential using Rose’s notation, where weights

multiply (AL1(m)+ iAL1(e)+AL−1(m)− iAL−1(e)). (b) Electric field in the notation

from [7], where weights multiply (Mo1L − iNe1L).

.

4. Conclusion

In this article we have compared different notations of the expressions for multipolar

modes in electromagnetism. We have exposed their symmetry properties, even in the

cases where they were hidden in the formalism. As a result, we have given compact

explicit expressions that relate the different notations. All this has been possible by

making use of the angular momentum operator and its properties. The relation between

the multipolar electromagnetic modes and the angular momentum is typically overlooked

in Mie theory, which may lead to some confusion. By presenting some of the most

commonly used expressions for multipolar fields on equal footing, we hope to have lifted

this possible confusion.
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Appendix

For the convenience of the reader, here we will write the expressions of some of the

functions we have used above.

Associated Legendre functions

The associated Legendre functions used in [7] are defined as follows:

PM
L (x) =

(1− x2)M/2

2LL!

dM+L

dxM+L
(x2 − 1)L. (A.1)

The form used in spherical harmonics has x = cos(θ), which is

PM
L (cos(θ)) =

(sin(θ))M

2LL!

dM+L

d cos(θ)M+L
(cos2(θ)− 1)L. (A.2)

This can be seen from page 90 of [7], which provides the definition in terms of the

ordinary Legendre polynomial. However, another common definition of the associated

Legendre polynomial, e.g. see [1], has an additional factor of (−1)M . Therefore, care

must be taken when comparing different references.

Spherical harmonics

The most common definition of spherical harmonics, also used in [11] (p. 241), is

Y M
L (θ, φ) =

√

2L+ 1

4π

(L−M)!

(L+M)!
eiMφ (−1)M

2LL!
(sin(θ))M

dL+M

d cos(θ)L+M
(cos2(θ)− 1)L. (A.3)

Using the definition of associated Legendre polynomials given by (A.2), this means

that

Y M
L (θ, φ) = (−1)M

√

2L+ 1

4π

(L−M)!

(L+M)!
PM
L (cos(θ))eiMφ. (A.4)

Based on this,

cos(Mφ)PM
L (cos(θ)) + i sin(Mφ)PM

L (cos(θ)) = eiMφPM
L (cos(θ))

= (−1)M

√

4π

2L+ 1

(L+M)!

(L−M)!
Y M
L (θ, φ)(A.5)

cos(Mφ)PM
L (cos(θ))− i sin(Mφ)PM

L (cos(θ)) = e−iMφPM
L (cos(θ))

= e−iMφP−M
L (cos(θ))(−1)M

(L+M)!

(L−M)!

=

√

4π

2L+ 1

(L+M)!

(L−M)!
Y −M
L (θ, φ). (A.6)
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Spherical Bessel functions and Hankel functions

The two spherical Bessel functions relevant for multipole expansions are defined in terms

of common Bessel functions as

jL(kr) =

√

π

2kr
JL+1/2(kr) (A.7)

yL(kr) =

√

π

2kr
YL+1/2(kr). (A.8)

Their linear combination is used to construct the spherical Hankel functions

h
(1)
L (kr) = jL(kr) + iyL(kr) (A.9)

h
(2)
L (kr) = jL(kr)− iyL(kr). (A.10)

Clebsch-Gordan coefficients

C(1LL;−1,M + 1) = −
√

(L−M)(L+M + 1)

2L(L+ 1)
(A.11)

C(1LL; 0,M) = − M
√

L(L+ 1)
(A.12)

C(1LL; 1,M − 1) =

√

(L+M)(L−M + 1)

2L(L+ 1)
(A.13)
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