856 research outputs found

    Mems vaporazing liquid microthruster: A comprehensive review

    Get PDF
    none4The interest in developing efficient nano and pico-satellites has grown in the last 20 years. Secondary propulsion systems capable of serving specific maneuvers are an essential part of these small satellites. In particular, Micro-Electro-Mechanical Systems (MEMS) Vaporizing Liquid Micro-thrusters (VLM), using water as a propellant, represent today a smart choice in terms of simplicity and cost. In this paper, we first propose a review of the international literature focused on MEMS VLM development, reviewing the different geometries and heating solutions proposed in the liter-ature. Then, we focus on a critical aspect of these micro thrusters: the presence of unstable phenom-ena. In particular, the boiling instabilities and reverse channel flow substantially impact the MEMS VLMs’ performance and limit their applicability. Finally, we review the research focused on the passive and active control of the boiling instabilities, based on VLM geometry optimization and active heating strategies, respectively. Today, these ones represent the two principal research axes followed by the scientific community to mitigate the drawbacks linked to the use of MEMS VLMs.openFontanarosa D.; Francioso L.; De Giorgi M.G.; Vetrano M.R.Fontanarosa, D.; Francioso, L.; De Giorgi, M. G.; Vetrano, M. R

    High Doses of Silica Nanoparticles Obtained by Microemulsion and Green Routes Compromise Human Alveolar Cells Morphology and Stiffness Differently

    Get PDF
    Among all the inorganic nanomaterials used in commercial products, industry, and medicine, the amorphous silica nanoparticles (SiO2 NPs) appeared to be often tolerated in living organisms. However, despite several toxicity studies, some concerns about the exposure to high doses of SiO2 NPs with different sizes were raised. Then, we used the microemulsion method to obtain stable SiO2 NPs having different sizes (110 nm, 50 nm, and 25 nm). In addition, a new one-pot green synthetic route using leaves extract of Laurus nobilis was performed, obtaining monodispersed ultrasmall SiO2 NPs without the use of dangerous chemicals. The NPs achieved by microemulsion were further functionalized with amino groups making the NPs surface positively charged. Then, high doses of SiO2 NPs (1 mg/mL and 3 mg/mL) achieved from the two routes, having different sizes and surface charges, were used to assess their impact on human alveolar cells (A549), being the best cell model mimicking the inhalation route. Cell viability and caspase-3 induction were analyzed as well as the cellular uptake, obtaining that the smallest (25 nm) and positive-charged NPs were more able to induce cytotoxicity, reaching values of about 60% of cell death. Surprisingly, cells incubated with green SiO2 NPs did not show strong toxicity, and 70% of them remained vital. This result was unusual for ultrasmall nanoobjects, generally highly toxic. The actin reorganization, nuclear morphology alteration, and cell membrane elasticity analyses confirmed the trend achieved from the biological assays. The obtained data demonstrate that the increase in cellular softness, i.e., the decrease in Young's modulus, could be associated with the smaller and positive NPs, recording values of about 3 kPa. On the contrary, green NPs triggered a slight decrease of stiffness values (c.a. 6 kPa) compared to the untreated cells (c.a. 8 kPa). As the softer cells were implicated in cancer progression and metastasization, this evidence strongly supported the idea of a link between the cell elasticity and physicochemical properties of NPs that, in turn, influenced the interaction with the cell membrane. Thus, the green SiO2 NPs compromised cells to a lesser extent than the other SiO2 NPs types. In this scenario, the elasticity evaluation could be an interesting tool to understand the toxicity of NPs with the aim of predicting some pathological phenomena associated with their exposure

    Influence of soundscape in the experience of an urban area: a case study in Rome

    Get PDF
    Over the last years several studies have demonstrated how the same environment can lead to different perceptual outcomes if the surrounding sounds change. Soundscape studies promote a user-centred approach for the characterization and management of acoustic environments in cities. There are several available protocols to gather perceptual data about how people experience the soundscapes in urban areas, and the most common tool is the “soundwalk”, a procedure where a group of people walks and stops at given locations in order to assess the acoustic environment, using some sound-related attributes (e.g., calm, pleasant, vibrant, chaotic, etc.). This research aims at evaluating the influence that different acoustic conditions together with specific environmental ones can induce on the pedestrians’ perception. In particular, the analysis was carried out within an artistically significant and culturally relevant urban district characterized by different traffic conditions, such as the archaeological area of the Colosseum in Rome. For this purpose, a soundwalk combined with a sound levels measurement campaign was organised in the archaeological area outside the Colosseum, during daytime and night time conditions, with a group of students applying the Method A of the ISO/TS 12913-2:2018, which addresses soundscape data collection. The results show how the correlations between the subjective responses and the measured data are significant and they can vary if the surrounding changes, both in terms of acoustical characteristics and environmental ones

    Explaining factors leading to community acceptance of wind energy. Results of an expert assessment

    Get PDF
    The present article deals with two key drivers of social acceptance of wind energy: procedural justice and distributional justice. It is based on a comparative expert assessment carried out in the frame of the Horizon 2020 project WinWind covering six European countries. The focus of the paper is on procedural and financial participation of citizens and local stakeholders in wind energy projects. The first part covers institutional arrangements for public engagement in two areas of the decision-making process—wind turbine zoning/siting in spatial plans and authorization procedures. Here, three levels of public involvement—information, consultation and participation—were analyzed. The second part examines active and financial participation of citizens and local stakeholders. Here, we distinguish between two different modes of governance: institutionalized forms of public governance and voluntary forms of corporate governance. The outcomes suggest that concrete paths to the social acceptance of wind energy are fostered via appropriate institutional spaces for public engagement. Furthermore, missing opportunities for active and passive financial participation can have strong negative consequences for community acceptance

    Lactobacillus Biofilms Influence Anti-Candida Activity

    Get PDF
    Lactobacilli are the dominant members of the healthy human vaginal microbiota and represent the first defense line from pathogen infection, including vulvovaginal candidiasis. Biofilm is the predominant microbial growth form in nature, and the formation of biofilms inside the human body has important implications in health and disease. In particular, the formation of biofilm by members of the human resident microbiota is desirable, as it can improve microbial persistence and influence functionality. In the present study, we investigated the capability of 16 vaginal Lactobacillus strains (belonging to Lactobacillus crispatus, Lactobacillus gasseri, Lactobacillus vaginalis, and Lactobacillus plantarum species) to form biofilms, and we correlated their mode of growth to anti-Candida activity. L. plantarum strains were the best biofilm producers, and high variability was registered in the level of biofilm formation among L. crispatus and L. gasseri strains. Culture supernatants derived from Lactobacillus biofilm and planktonic growth were tested toward a panel of Candida clinical isolates (Candida albicans, Candida glabrata, Candida lusitaniae, Candida tropicalis, Candida krusei, and Candida parapsilosis) and their metabolome assessed by 1H-NMR. L. crispatus and L. plantarum strains exhibited the best fungistatic profile, and biofilms enhanced their anti-Candida activity; on the contrary, L. gasseri strains were more effective when grown in a planktonic mode. Biofilm/planktonic mode of growth also affects Lactobacillus metabolism, mainly influencing nitrogen and amino acid pathways, and anti-Candida activity is instead strictly related to carbohydrate metabolism. The present study underlined the strict interdependence between microbial mode of growth, metabolism, and functional properties. Biofilm formation by members of the healthy human microbiota represents a crucial issue in the field of microbial physiology and host–microbiota interactions, beyond supporting the development of new antimycotic strategies based on probiotics grown in adherence.Fil: Parolin, Carola. Universidad de Bologna; ItaliaFil: Croatti, Vanessa. Universidad de Bologna; ItaliaFil: Laghi, Luca. Universidad de Bologna; ItaliaFil: Giordani, Barbara. Universidad de Bologna; ItaliaFil: Tondi, Maria Rosaria. Universidad de Bologna; ItaliaFil: de Gregorio, Priscilla Romina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Centro de Referencia para Lactobacilos; ArgentinaFil: Foschi, Claudio. Universidad de Bologna; ItaliaFil: Vitali, Beatrice. Universidad de Bologna; Itali

    Gefitinib inhibits the ability of human bone marrow stromal cells to induce osteoclast differentiation: implications for the pathogenesis and treatment of bone metastasis.

    Get PDF
    Significant relief of bone pain in patients with bone metastases was observed in a clinical trial of the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor gefitinib in breast cancer. Osteoclast activation and differentiation are regulated by bone marrow stromal cells (BMSC), a heterogeneous cell compartment that comprehends undifferentiated mesenchymal stem cells (MSC) and their specialized progeny. In this regard, we found that human primary BMSCs express immunoreactive EGFR. Expression of EGFR mRNA and protein was also demonstrated in two human, continuous MSC-like cell lines, HDS-1 and HDS-2 cells. Treatment of HDS cells with EGF produced a significant increase in the levels of activated EGFR which was not observed in the presence of gefitinib. A significant reduction in the basal levels of activation of the EGFR and of Akt was observed in HDS cells following treatment with gefitinib. Treatment of HDS cells with gefitinib produced a significant reduction in the levels of secreted macrophage colony-stimulating factor (M-CSF) and cell-associated receptor activator of NF-kappaB ligand (RANKL) in both cell lines, as assessed by using specific ELISA and Western blotting techniques. Finally, the ability to sustain the differentiation of pre-osteoclasts of conditioned medium from gefitinib-treated HDS cells was reduced by approximately 45% as compared with untreated HDS cells. These data have demonstrated for the first time that the EGFR regulates the ability of BMSCs to induce osteoclast differentiation and strongly support clinical trials of gefitinib in breast cancer patients with bone disease

    Synthesis, computational studies and assessment of in vitro inhibitory activity of umbelliferon-based compounds against tumour-associated carbonic anhydrase isoforms IX and XII

    Get PDF
    Coumarins are widely diffused secondary metabolites possessing a plethora of biological activities. It has been established that coumarins represent a peculiar class of human carbonic anhydrase (hCA) inhibitors having a distinct mechanism of action involving a non-classical binding with amino acid residues paving the entrance of hCA catalytic site. Herein, we report the synthesis of a small series of new coumarin derivatives 7-11, 15, 17 prepared via classical Pechmann condensation starting from resorcinol derivatives and suitable β-ketoesters. The evaluation of inhibitory activity revealed that these compounds possessed nanomolar affinity and high selectivity towards tumour-associated hCA IX and XII over cytosolic hCA I and hCA II isoforms. To investigate the binding mode of these new coumarin-inspired inhibitors, the most active compounds 10 and 17 were docked within hCA XII catalytic cleft

    Rational design of small molecules able to inhibit α-synuclein amyloid aggregation for the treatment of Parkinson's disease

    Get PDF
    Parkinson's disease is one of the most common neurodegenerative disorders in elderly age. One of the mechanisms involved in the neurodegeneration appears related to the aggregation of the presynaptic protein alpha synuclein (α-syn) into toxic oligomers and fibrils. To date, no highly effective treatment is currently available; therefore, there is an increasing interest in the search of new therapeutic tools. The modulation of α-syn aggregation represents an emergent and promising disease-modifying strategy for reducing or blocking the neurodegenerative process. Herein, by combining in silico and in vitro screenings we initially identified 3-(cinnamylsulfanyl)-5-(4-pyridinyl)-1,2,4-triazol-4-amine (3) as α-syn aggregation inhibitor that was then considered a promising hit for the further design of a new series of small molecules. Therefore, we rationally designed new hit-derivatives that were synthesised and evaluated by biological assays. Lastly, the binding mode of the newer inhibitors was predicted by docking studies

    Post-traumatic olfactory dysfunction: a scoping review of assessment and rehabilitation approaches

    Get PDF
    Post-traumatic Olfactory Dysfunction (PTOD) consists of a complete or partial loss of olfactory function that may occur after a traumatic brain injury (TBI). PTOD may be linked to some neuropsychiatric features, such as social, cognitive and executive dysfunction, as well as behavioral symptoms, especially when TBI involves the orbito-frontal cortex. The diagnosis of PTOD is based on medical history and clinical data and it is supported by psychometric tests (i.e., subjective tools) as well as electrophysiological and neuroimaging measures (i.e., objective methods). The assessment methods allow monitoring the changes in olfactory function over time and help to establish the right therapeutic and rehabilitative approach. In this context, the use of the olfactory training (OT), which is a non-pharmacological and non-invasive treatment option, could promote olfactory function through top-down (central) and bottom-up (peripheral) processes. To better manage patients with TBI, PTOD should be detected early and properly treated using the various therapeutic rehabilitative possibilities, both conventional and advanced, also taking into consideration the emerging neuromodulation approach
    • …
    corecore