48 research outputs found

    BEAMS Lab at MIT: Status report

    Get PDF
    The Biological Engineering Accelerator Mass Spectrometry (BEAMS) Lab at the Massachusetts Institute of Technology is a facility dedicated to incorporating AMS into life sciences research. As such, it is focused exclusively on radiocarbon and tritium AMS and makes use of a particularly compact instrument of a size compatible with most laboratory space. Recent developments at the BEAMS Lab were aimed to improve different stages of the measurement process, such as the carbon sample injection interface, the simultaneous detection of tritium and hydrogen and finally, the overall operation of the system. Upgrades and results of those efforts are presented here.United States. National Institutes of Health (grant P30-ES02109)United States. National Institutes of Health (grant R42-CA084688)National Institutes of Health. National Center for Research Resources (grant UL1 RR 025005)GlaxoSmithKlin

    Biphasic Elimination of Tenofovir Diphosphate and Nonlinear Pharmacokinetics of Zidovudine Triphosphate in a Microdosing Study

    Get PDF
    Objective: Phase 0 studies can provide initial pharmacokinetics (PKs) data in humans and help to facilitate early drug development, but their predictive value for standard dosing is controversial. To evaluate the prediction of microdosing for active intracellular drug metabolites, we compared the PK profile of 2 antiretroviral drugs, zidovudine (ZDV) and tenofovir (TFV), in microdose and standard dosing regimens. Study Design: We administered a microdose (100 μg) of [superscript 14]C-labeled drug (ZDV or tenofovir disoproxil fumarate) with or without a standard unlabelled dose (300 mg) to healthy volunteers. Both the parent drug in plasma and the active metabolite, ZDV-triphosphate (ZDV-TP) or TFV-diphosphate (TFV-DP) in peripheral blood mononuclear cells (PBMCs) and CD4[superscript +] cells were measured by accelerator mass spectrometry. Results: The intracellular ZDV-TP concentration increased less than proportionally over the dose range studied (100 μg–300 mg), whereas the intracellular TFV-DP PKs were linear over the same dose range. ZDV-TP concentrations were lower in CD4[superscript +] cells versus total PBMCs, whereas TFV-DP concentrations were not different in CD4[superscript +] cells and PBMCs. Conclusions: Our data were consistent with a rate-limiting step in the intracellular phosphorylation of ZDV but not TFV. Accelerator mass spectrometry shows promise for predicting the PK of active intracellular metabolites of nucleosides, but nonlinearity of PK may be seen with some drugs.Johns Hopkins University (Institute for Clinical and Translational Research CTSA Grant UL1-RR025005

    Single Dose Pharmacokinetics of Oral Tenofovir in Plasma, Peripheral Blood Mononuclear Cells, Colonic Tissue, and Vaginal Tissue

    Get PDF
    HIV seroconversion outcomes in preexposure prophylaxis (PrEP) trials of oral tenofovir (TFV)-containing regimens are highly sensitive to drug concentration, yet less-than-daily dosing regimens are under study. Description of TFV and its active moiety, TFV diphosphate (TFV-DP), in blood, vaginal tissue, and colon tissue may guide the design and interpretation of PrEP clinical trials. Six healthy women were administered a single oral dose of 300 mg tenofovir disoproxil fumarate (TDF) and 4.3 mg (12.31 MBq, 333 μCi) [superscript 14]C-TDF slurry. Blood was collected every 4 h for the first 24 h, then at 4, 8, 11, and 15 days postdosing. Colonic and vaginal samples (tissue, total and CD4+ cells, luminal fluid and cells) were collected 1, 8 and 15 days postdose. Samples were analyzed for TFV and TFV-DP. Plasma TFV demonstrated triphasic decay with terminal elimination half-life median [interquartile range (IQR)] 69 h (58–77). Peripheral blood mononuclear cell (PBMC) TFV-DP demonstrated biphasic peaks (median 12 h and 96 h) followed by a terminal 48 h (38–76) half-life; C[subscript max] was 20 fmol/million cells (2–63). One day postdose, the TFV-DP paired colon:vaginal tissue concentration ratio was 1 or greater in all subjects' tissue homogenates, median 124 (range 1–281), but was not sustained. The ratio was lower and more variable in cells extracted from tissue. Among all sample types, TFV and TFV-DP half-life ranged from 23 to 139 h. PBMC TFV-DP rose slowly in the hours after dosing indicating that success with exposure-driven dosing regimens may be sensitive to timing of the dose prior to exposure. Colonic tissue homogenate TFV-DP concentrations were greater than in vaginal homogenate at 24 h, but not in cells extracted from tissue. These and the other pharmacokinetic findings will guide the interpretation and design of future PrEP trials.National Center for Advancing Translational Sciences (U.S.) (Grant UL1RR025005)National Institutes of Health (U.S.)National Institutes of Health (U.S.) (Roadmap for Medical Research

    Chemical and cytokine features of innate immunity characterize serum and tissue profiles in inflammatory bowel disease

    Get PDF
    Inflammatory bowel disease (IBD) arises from inappropriate activation of the mucosal immune system resulting in a state of chronic inflammation with causal links to colon cancer. Helicobacter hepaticus-infected Rag2[superscript −/−] mice emulate many aspects of human IBD, and our recent work using this experimental model highlights the importance of neutrophils in the pathology of colitis. To define molecular mechanisms linking colitis to the identity of disease biomarkers, we performed a translational comparison of protein expression and protein damage products in tissues of mice and human IBD patients. Analysis in inflamed mouse colons identified the neutrophil- and macrophage-derived damage products 3-chlorotyrosine (Cl-Tyr) and 3-nitrotyrosine, both of which increased with disease duration. Analysis also revealed higher Cl-Tyr levels in colon relative to serum in patients with ulcerative colitis and Crohn disease. The DNA chlorination damage product, 5-chloro-2′-deoxycytidine, was quantified in diseased human colon samples and found to be present at levels similar to those in inflamed mouse colons. Multivariate analysis of these markers, together with serum proteins and cytokines, revealed a general signature of activated innate immunity in human IBD. Signatures in ulcerative colitis sera were strongly suggestive of neutrophil activity, and those in Crohn disease and mouse sera were suggestive of both macrophage and neutrophil activity. These data point to innate immunity as a major determinant of serum and tissue profiles and provide insight into IBD disease processes.National Institutes of Health (U.S.) (Grant CA26731)Massachusetts Institute of Technology. Center for Environmental Health Sciences (Grant ES002109))Massachusetts Institute of Technology (Merck Fellowship)German Academic Exchange Service (Fellowship

    Evaluating a Measure of Social Health Derived from Two Mental Health Recovery Measures: The California Quality of Life (CA-QOL) and Mental Health Statistics Improvement Program Consumer Survey (MHSIP)

    Get PDF
    Social health is important to measure when assessing outcomes in community mental health. Our objective was to validate social health scales using items from two broader commonly used measures that assess mental health outcomes. Participants were 609 adults receiving psychological treatment services. Items were identified from the California Quality of Life (CA-QOL) and Mental Health Statistics Improvement Program (MHSIP) outcome measures by their conceptual correspondence with social health and compared to the Social Functioning Questionnaire (SFQ) using correlational analyses. Pearson correlations for the identified CA-QOL and MSHIP items with the SFQ ranged from .42 to .62, and the identified scale scores produced Pearson correlation coefficients of .56, .70, and, .70 with the SFQ. Concurrent validity with social health was supported for the identified scales. The current inclusion of these assessment tools allows community mental health programs to include social health in their assessments

    Effects of hospital facilities on patient outcomes after cancer surgery: an international, prospective, observational study

    Get PDF
    Background Early death after cancer surgery is higher in low-income and middle-income countries (LMICs) compared with in high-income countries, yet the impact of facility characteristics on early postoperative outcomes is unknown. The aim of this study was to examine the association between hospital infrastructure, resource availability, and processes on early outcomes after cancer surgery worldwide.Methods A multimethods analysis was performed as part of the GlobalSurg 3 study-a multicentre, international, prospective cohort study of patients who had surgery for breast, colorectal, or gastric cancer. The primary outcomes were 30-day mortality and 30-day major complication rates. Potentially beneficial hospital facilities were identified by variable selection to select those associated with 30-day mortality. Adjusted outcomes were determined using generalised estimating equations to account for patient characteristics and country-income group, with population stratification by hospital.Findings Between April 1, 2018, and April 23, 2019, facility-level data were collected for 9685 patients across 238 hospitals in 66 countries (91 hospitals in 20 high-income countries; 57 hospitals in 19 upper-middle-income countries; and 90 hospitals in 27 low-income to lower-middle-income countries). The availability of five hospital facilities was inversely associated with mortality: ultrasound, CT scanner, critical care unit, opioid analgesia, and oncologist. After adjustment for case-mix and country income group, hospitals with three or fewer of these facilities (62 hospitals, 1294 patients) had higher mortality compared with those with four or five (adjusted odds ratio [OR] 3.85 [95% CI 2.58-5.75]; p<0.0001), with excess mortality predominantly explained by a limited capacity to rescue following the development of major complications (63.0% vs 82.7%; OR 0.35 [0.23-0.53]; p<0.0001). Across LMICs, improvements in hospital facilities would prevent one to three deaths for every 100 patients undergoing surgery for cancer.Interpretation Hospitals with higher levels of infrastructure and resources have better outcomes after cancer surgery, independent of country income. Without urgent strengthening of hospital infrastructure and resources, the reductions in cancer-associated mortality associated with improved access will not be realised

    Design and baseline characteristics of the finerenone in reducing cardiovascular mortality and morbidity in diabetic kidney disease trial

    Get PDF
    Background: Among people with diabetes, those with kidney disease have exceptionally high rates of cardiovascular (CV) morbidity and mortality and progression of their underlying kidney disease. Finerenone is a novel, nonsteroidal, selective mineralocorticoid receptor antagonist that has shown to reduce albuminuria in type 2 diabetes (T2D) patients with chronic kidney disease (CKD) while revealing only a low risk of hyperkalemia. However, the effect of finerenone on CV and renal outcomes has not yet been investigated in long-term trials. Patients and Methods: The Finerenone in Reducing CV Mortality and Morbidity in Diabetic Kidney Disease (FIGARO-DKD) trial aims to assess the efficacy and safety of finerenone compared to placebo at reducing clinically important CV and renal outcomes in T2D patients with CKD. FIGARO-DKD is a randomized, double-blind, placebo-controlled, parallel-group, event-driven trial running in 47 countries with an expected duration of approximately 6 years. FIGARO-DKD randomized 7,437 patients with an estimated glomerular filtration rate >= 25 mL/min/1.73 m(2) and albuminuria (urinary albumin-to-creatinine ratio >= 30 to <= 5,000 mg/g). The study has at least 90% power to detect a 20% reduction in the risk of the primary outcome (overall two-sided significance level alpha = 0.05), the composite of time to first occurrence of CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure. Conclusions: FIGARO-DKD will determine whether an optimally treated cohort of T2D patients with CKD at high risk of CV and renal events will experience cardiorenal benefits with the addition of finerenone to their treatment regimen. Trial Registration: EudraCT number: 2015-000950-39; ClinicalTrials.gov identifier: NCT02545049

    Cytochrome P450-Mediated Metabolism and DNA Binding of 2-Amino-1,7-dimethylimidazo[4,5-<i>g</i>]quinoxaline and Its Carcinogenic Isomer 2-Amino-3,8-dimethylimidazo[4,5-<i>f</i>]quinoxaline in Mice

    No full text
    2-Amino-1,7-dimethylimidazo­[4,5-<i>g</i>]­quinoxaline (MeI<i>g</i>Qx) is a recently discovered heterocyclic aromatic amine (HAA) that is formed during the cooking of meats. MeI<i>g</i>Qx is an isomer of 2-amino-3,8-dimethylmidazo­[4,5-<i>f</i>]­quinoxaline (MeIQx), a rodent carcinogen and possible human carcinogen that also occurs in cooked meats. MeI<i>g</i>Qx is a bacterial mutagen, but knowledge about its metabolism and carcinogenic potential is lacking. Metabolism studies on MeI<i>g</i>Qx and MeIQx were conducted with human and mouse liver microsomes, and recombinant human P450s. DNA binding studies were also investigated in mice to ascertain the genotoxic potential of MeI<i>g</i>Qx in comparison to MeIQx. Both HAAs underwent comparable rates of <i>N</i>-oxidation to form genotoxic <i>N</i>-hydroxylated metabolites with mouse liver microsomes (0.2–0.3 nmol/min/mg protein). The rate of <i>N</i>-oxidation of MeIQx was 4-fold greater than the rate of <i>N</i>-oxidation of MeI<i>g</i>Qx with human liver microsomes (1.7 vs 0.4 nmol/min/mg protein). The rate of <i>N</i>-oxidation, by recombinant human P450 1A2, was comparable for both substrates (6 pmol/min/pmol P450 1A2). MeI<i>g</i>Qx also underwent <i>N</i>-oxidation by human P450s 1A1 and 1B1 at appreciable rates, whereas MeIQx was poorly metabolized by these P450s. The potential of MeI<i>g</i>Qx and MeIQx to form DNA adducts was assessed in female C57BL/6 mice given [<sup>14</sup>C]-MeI<i>g</i>Qx (10 μCi, 9.68 mg/kg body wt) or [<sup>14</sup>C]-MeIQx (10 μCi, 2.13 mg/kg body wt). DNA adduct formation in the liver, pancreas, and colorectum was measured by accelerator mass spectrometry at 4, 24, or 48 h post-treatment. Variable levels of adducts were detected in all organs. The adduct levels were similar for both HAAs, when adjusted for dose, and ranged from 1 to 600 adducts per 10<sup>7</sup> nucleotides per mg/kg dose. Thus, MeI<i>g</i>Qx undergoes metabolic activation and binds to DNA at levels that are comparable to MeIQx. Given the high amounts of MeI<i>g</i>Qx formed in cooked meats, further investigations are warranted to assess the carcinogenic potential of this HAA
    corecore