2,213 research outputs found

    Competition in the market for takeover advisers

    Full text link
    We investigate factors that motivate bidders to engage advisers, we model adviser selection and we test whether value-adding advisers gain market share. Our sample includes 801 attempted takeovers over 1989-1998 in Australia. Our results indicate advisers are likely to be engaged if the takeover deal is large, hostile, and includes non-cash compensation. We find deal completion is not as closely correlated with adviser rankings as does Rau (2000) but we confirm his finding that adviser ranked high on market value of deals advised do not have a comparative advantage in adding value to firms. However, we document some (limited) evidence that value- adding advisers achieve an increase in subsequent deal flow. Our results are consistent with specialization among takeover advisers

    Deep Sequencing of Target Linkage Assay-Identified Regions in Familial Breast Cancer: Methods, Analysis Pipeline and Troubleshooting

    Get PDF
    Background: The classical candidate-gene approach has failed to identify novel breast cancer susceptibility genes. Nowadays, massive parallel sequencing technology allows the development of studies unaffordable a few years ago. However, analysis protocols are not yet sufficiently developed to extract all information from the huge amount of data obtained. Methodology/Principal Findings: In this study, we performed high throughput sequencing in two regions located on chromosomes 3 and 6, recently identified by linkage studies by our group as candidate regions for harbouring breast cancer susceptibility genes. In order to enrich for the coding regions of all described genes located in both candidate regions, a hybrid-selection method on tiling microarrays was performed. Conclusions/Significance: We developed an analysis pipeline based on SOAP aligner to identify candidate variants with a high real positive confirmation rate (0.89), with which we identified eight variants considered candidates for functiona

    Laser cooling of a diatomic molecule

    Full text link
    It has been roughly three decades since laser cooling techniques produced ultracold atoms, leading to rapid advances in a vast array of fields. Unfortunately laser cooling has not yet been extended to molecules because of their complex internal structure. However, this complexity makes molecules potentially useful for many applications. For example, heteronuclear molecules possess permanent electric dipole moments which lead to long-range, tunable, anisotropic dipole-dipole interactions. The combination of the dipole-dipole interaction and the precise control over molecular degrees of freedom possible at ultracold temperatures make ultracold molecules attractive candidates for use in quantum simulation of condensed matter systems and quantum computation. Also ultracold molecules may provide unique opportunities for studying chemical dynamics and for tests of fundamental symmetries. Here we experimentally demonstrate laser cooling of the molecule strontium monofluoride (SrF). Using an optical cycling scheme requiring only three lasers, we have observed both Sisyphus and Doppler cooling forces which have substantially reduced the transverse temperature of a SrF molecular beam. Currently the only technique for producing ultracold molecules is by binding together ultracold alkali atoms through Feshbach resonance or photoassociation. By contrast, different proposed applications for ultracold molecules require a variety of molecular energy-level structures. Our method provides a new route to ultracold temperatures for molecules. In particular it bridges the gap between ultracold temperatures and the ~1 K temperatures attainable with directly cooled molecules (e.g. cryogenic buffer gas cooling or decelerated supersonic beams). Ultimately our technique should enable the production of large samples of molecules at ultracold temperatures for species that are chemically distinct from bialkalis.Comment: 10 pages, 7 figure

    Importance Sampling for Objetive Funtion Estimations in Neural Detector Traing Driven by Genetic Algorithms

    Get PDF
    To train Neural Networks (NNs) in a supervised way, estimations of an objective function must be carried out. The value of this function decreases as the training progresses and so, the number of test observations necessary for an accurate estimation has to be increased. Consequently, the training computational cost is unaffordable for very low objective function value estimations, and the use of Importance Sampling (IS) techniques becomes convenient. The study of three different objective functions is considered, which implies the proposal of estimators of the objective function using IS techniques: the Mean-Square error, the Cross Entropy error and the Misclassification error criteria. The values of these functions are estimated by IS techniques, and the results are used to train NNs by the application of Genetic Algorithms. Results for a binary detection in Gaussian noise are provided. These results show the evolution of the parameters during the training and the performances of the proposed detectors in terms of error probability and Receiver Operating Characteristics curves. At the end of the study, the obtained results justify the convenience of using IS in the training

    T-cell subpopulations αβ and γδ in cord blood of very preterm infants : The influence of intrauterine infection

    Get PDF
    Open Access: This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are creditedPreterm infants are very susceptible to infections. Immune response mechanisms in this group of patients and factors that influence cord blood mononuclear cell populations remain poorly understood and are considered insufficient. However, competent immune functions of the cord blood mononuclear cells are also described. The aim of this work was to evaluate the T-cell population (CD3+) with its subpopulations bearing T-cell receptor (TCR) αβ or TCR γδ in the cord blood of preterm infants born before 32 weeks of gestation by mothers with or without an intrauterine infection. Being a pilot study, it also aimed at feasibility check and assessment of an expected effect size. The cord blood samples of 46 infants age were subjected to direct immunofluorescent staining with monoclonal antibodies and then analyzed by flow cytometry. The percentage of CD3+ cells in neonates born by mothers with diagnosis of intrauterine infection was significantly lower than in neonates born by mothers without infection (p = 0.005; Mann-Whitney U test). The number of cells did not differ between groups. Infection present in the mother did not have an influence on the TCR αβ or TCR γδ subpopulations. Our study contributes to a better understanding of preterm infants' immune mechanisms, and sets the stage for further investigations.Peer reviewedFinal Published versio

    Simultaneous PET-MRI Studies of the Concordance of Atrophy and Hypometabolism in Syndromic Variants of Alzheimer's Disease and Frontotemporal Dementia: An Extended Case Series

    Get PDF
    Background: Simultaneous PET-MRI is used to compare patterns of cerebral hypometabolism and atrophy in six different dementia syndromes. Objectives: The primary objective was to conduct an initial exploratory study regarding the concordance of atrophy and hypometabolism in syndromic variants of Alzheimer’s disease (AD) and frontotemporal dementia (FTD). The secondary objective was to determine the effect of image analysis methods on determination of atrophy and hypometabolism. Method: PET and MRI data were acquired simultaneously on 24 subjects with six variants of AD and FTD (n = 4 per group). Atrophy was rated visually and also quantified with measures of cortical thickness. Hypometabolism was rated visually and also quantified using atlas- and SPM-based approaches. Concordance was measured using weighted Cohen’s kappa. Results: Atrophy-hypometabolism concordance differed markedly between patient groups; kappa scores ranged from 0.13 (nonfluent/agrammatic variant of primary progressive aphasia, nfvPPA) to 0.49 (posterior cortical variant of AD, PCA). Heterogeneity was also observed within groups; the confidence intervals of kappa scores ranging from 0–0.25 for PCA to 0.29–0.61 for nfvPPA. More widespread MRI and PET changes were identified using quantitative methods than on visual rating. Conclusion: The marked differences in concordance identified in this initial study may reflect differences in the molecular pathologies underlying AD and FTD syndromic variants but also operational differences in the methods used to diagnose these syndromes. The superior ability of quantitative methodologies to detect changes on PET and MRI, if confirmed on larger cohorts, may favor their usage over qualitative visual inspection in future clinical diagnostic practic

    Spatial and topological organization of DNA chains induced by gene co-localization

    Get PDF
    Transcriptional activity has been shown to relate to the organization of chromosomes in the eukaryotic nucleus and in the bacterial nucleoid. In particular, highly transcribed genes, RNA polymerases and transcription factors gather into discrete spatial foci called transcription factories. However, the mechanisms underlying the formation of these foci and the resulting topological order of the chromosome remain to be elucidated. Here we consider a thermodynamic framework based on a worm-like chain model of chromosomes where sparse designated sites along the DNA are able to interact whenever they are spatially close-by. This is motivated by recurrent evidence that there exists physical interactions between genes that operate together. Three important results come out of this simple framework. First, the resulting formation of transcription foci can be viewed as a micro-phase separation of the interacting sites from the rest of the DNA. In this respect, a thermodynamic analysis suggests transcription factors to be appropriate candidates for mediating the physical interactions between genes. Next, numerical simulations of the polymer reveal a rich variety of phases that are associated with different topological orderings, each providing a way to increase the local concentrations of the interacting sites. Finally, the numerical results show that both one-dimensional clustering and periodic location of the binding sites along the DNA, which have been observed in several organisms, make the spatial co-localization of multiple families of genes particularly efficient.Comment: Figures and Supplementary Material freely available on http://dx.doi.org/10.1371/journal.pcbi.100067

    The Structural Architecture of an Infectious Mammalian Prion Using Electron Cryomicroscopy

    Get PDF
    The structure of the infectious prion protein (PrPSc), which is responsible for Creutzfeldt-Jakob disease in humans and bovine spongiform encephalopathy, has escaped all attempts at elucidation due to its insolubility and propensity to aggregate. PrPSc replicates by converting the non-infectious, cellular prion protein (PrPC) into the misfolded, infectious conformer through an unknown mechanism. PrPSc and its N-terminally truncated variant, PrP 27-30, aggregate into amorphous aggregates, 2D crystals, and amyloid fibrils. The structure of these infectious conformers is essential to understanding prion replication and the development of structure-based therapeutic interventions. Here we used the repetitive organization inherent to GPI-anchorless PrP 27-30 amyloid fibrils to analyze their structure via electron cryomicroscopy. Fourier-transform analyses of averaged fibril segments indicate a repeating unit of 19.1 Å. 3D reconstructions of these fibrils revealed two distinct protofilaments, and, together with a molecular volume of 18,990 Å3, predicted the height of each PrP 27-30 molecule as ~17.7 Å. Together, the data indicate a four-rung β-solenoid structure as a key feature for the architecture of infectious mammalian prions. Furthermore, they allow to formulate a molecular mechanism for the replication of prions. Knowledge of the prion structure will provide important insights into the self-propagation mechanisms of protein misfolding

    An analysis of protein patterns present in the saliva of diabetic patients using pairwise relationship and hierarchical clustering

    Get PDF
    Molecular diagnosis is based on the quantification of RNA, proteins, or metabolites whose concentration can be correlated to clinical situations. Usually, these molecules are not suitable for early diagnosis or to follow clinical evolution. Large-scale diagnosis using these types of molecules depends on cheap and preferably noninvasive strategies for screening. Saliva has been studied as a noninvasive, easily obtainable diagnosis fluid, and the presence of serum proteins in it enhances its use as a systemic health status monitoring tool. With a recently described automated capillary electrophoresis-based strategy that allows us to obtain a salivary total protein profile, it is possible to quantify and analyze patterns that may indicate disease presence or absence. The data of 19 persons with diabetes and 58 healthy donors obtained by capillary electrophoresis were transformed, treated, and grouped so that the structured values could be used to study individuals’ health state. After Pairwise Relationships and Hierarchical Clustering analysis were observed that amplitudes of protein peaks present in the saliva of these individuals could be used as differentiating parameters between healthy and unhealthy people. It indicates that these characteristics can serve as input for a future computational intelligence algorithm that will aid in the stratification of individuals that manifest changes in salivary proteins.info:eu-repo/semantics/acceptedVersio

    Peptidases compartmentalized to the Ascaris suum intestinal lumen and apical intestinal membrane

    Get PDF
    The nematode intestine is a tissue of interest for developing new methods of therapy and control of parasitic nematodes. However, biological details of intestinal cell functions remain obscure, as do the proteins and molecular functions located on the apical intestinal membrane (AIM), and within the intestinal lumen (IL) of nematodes. Accordingly, methods were developed to gain a comprehensive identification of peptidases that function in the intestinal tract of adult female Ascaris suum. Peptidase activity was detected in multiple fractions of the A. suum intestine under pH conditions ranging from 5.0 to 8.0. Peptidase class inhibitors were used to characterize these activities. The fractions included whole lysates, membrane enriched fractions, and physiological- and 4 molar urea-perfusates of the intestinal lumen. Concanavalin A (ConA) was confirmed to bind to the AIM, and intestinal proteins affinity isolated on ConA-beads were compared to proteins from membrane and perfusate fractions by mass spectrometry. Twenty-nine predicted peptidases were identified including aspartic, cysteine, and serine peptidases, and an unexpectedly high number (16) of metallopeptidases. Many of these proteins co-localized to multiple fractions, providing independent support for localization to specific intestinal compartments, including the IL and AIM. This unique perfusion model produced the most comprehensive view of likely digestive peptidases that function in these intestinal compartments of A. suum, or any nematode. This model offers a means to directly determine functions of these proteins in the A. suum intestine and, more generally, deduce the wide array functions that exist in these cellular compartments of the nematode intestine
    • …
    corecore