2,127 research outputs found

    Analytical study of laser supported combustion waves in hydrogen

    Get PDF
    A one-dimensional energy equation, with constant pressure and area, was used to model the LSC wave. This equation balances convection, conduction, laser energy absorption, radiation energy loss and radiation energy transport. Solutions of this energy equation were obtained to give profiles of temperature and other properties, as well as the relation between laser intensity and mass flux through the wave. The flow through the LSC wave was then conducted through a variable pressure, variable area streamtube to accelerate it to high speed, with the propulsion application in mind. A numerical method for coupling the LSC wave model to the streamtube flow was developed, and a sample calculation was performed. The result shows that 42% of the laser power has been radiated away by the time the gas reaches the throat. It was concluded that in the radially confined flows of interest for propulsion applications, transverse velocities would be less important than in the unconfined flows where air experiments have been conducted

    Laser-heated rocket studies

    Get PDF
    CW laser heated rocket propulsion was investigated in both the flowing core and stationary core configurations. The laser radiation considered was 10.6 micrometers, and the working gas was unseeded hydrogen. The areas investigated included initiation of a hydrogen plasma capable of absorbing laser radiation, the radiation emission properties of hot, ionized hydrogen, the flow of hot hydrogen while absorbing and radiating, the heat losses from the gas and the rocket performance. The stationary core configuration was investigated qualitatively and semi-quantitatively. It was found that the flowing core rockets can have specific impulses between 1,500 and 3,300 sec. They are small devices, whose heating zone is only a millimeter to a few centimeters long, and millimeters to centimeters in radius, for laser power levels varying from 10 to 5,000 kW, and pressure levels of 3 to 10 atm. Heat protection of the walls is a vital necessity, though the fraction of laser power lost to the walls can be as low as 10% for larger powers, making the rockets thermally efficient

    Proposal for a study of computer mapping of terrain using multispectral data from ERTS-A for the Yellowstone National Park test site

    Get PDF
    The author has identified the following significant results. A terrain map of Yellowstone National Park showed plant community types and other classes of ground cover in what is basically a wild land. The map comprised 12 classes, six of which were mapped with accuracies of 70 to 95%. The remaining six classes had spectral reflectances that overlapped appreciably, and hence, those were mapped less accurately. Techniques were devised for quantitatively comparing the recognition map of the park with control data acquired from ground inspection and from analysis of sidelooking radar images, a thermal IR mosaic, and IR aerial photos of several scales. Quantitative analyses were made in ten 40 sq km test areas. Comparison mechanics were performed by computer with the final results displayed on line printer output. Forested areas were mapped by computer using ERTS data for less than 1/4 the cost of the conventional forest mapping technique for topographic base maps

    A Novel Isoflurane Anesthesia Induction System for Raccoons

    Get PDF
    We developed a novel small-volume (24-L) conical-shaped isoflurane anesthesia induction chamber for use in a den chamber and tested it along with 3 conventional stand-alone induction chambers (2 clear acrylic plastic chambers and a cylindrical-shaped chamber) to determine utility for daily short-duration manipulations of captive raccoons (Procyon lotor). Although the conventional chambers were valuable, the majority of inductions were performed using the cone chamber in a pen setting. With the novel device, we were able to minimize the need for pre-anesthetic handling of animals and eliminate the need for injectable anesthesia agents. As a result, side effects normally associated with injectable agents were avoided. Mean anesthesia induction time using the cone chamber was 3.4 min (SD = 0.90). When used as designed, conventional chambers worked well, with induction times ranging from 2.7 min to 5.4 min. Because the stand-alone chambers were not reliant upon den chambers for use, they may provide greater utility for field work. The conical-shaped induction chamber, however, provides an option for safe short-duration anesthetization of captive raccoons and could perhaps be used with other species and in other research settings

    Thirteen category recognition map of Yellowstone National Park produced from ERTS-1 MSS data

    Get PDF
    There are no author-identified significant results in this report

    Antigenic Complementarity in the Origins of Autoimmunity: A General Theory Illustrated With a Case Study of Idiopathic Thrombocytopenia Purpura

    Get PDF
    We describe a novel, testable theory of autoimmunity, outline novel predictions made by the theory, and illustrate its application to unravelling the possible causes of idiopathic thrombocytopenia purpura (ITP). Pairs of stereochemically complementary antigens induce complementary immune responses (antibody or T-cell) that create loss of regulation and civil war within the immune system itself. Antibodies attack antibodies creating circulating immune complexes; T-cells attack T-cells creating perivascular cuffing. This immunological civil war abrogates the self-nonself distinction. If at least one of the complementary antigens mimics a self antigen, then this unregulated immune response will target host tissues as well. Data demonstrating that complementary antigens are found in some animal models of autoimmunity and may be present in various human diseases, especially ITP, are reviewed. Specific mechanisms for preventing autoimmunity or suppressing existing autoimmunity are derived from the theory, and critical tests proposed. Finally, we argue that Koch's postulates are inadequate for establishing disease causation for multiple-antigen diseases and discuss the possibility that current research has failed to elucidate the causes of human autoimmune diseases because we are using the wrong criteria

    Infrared Behaviour of Systems With Goldstone Bosons

    Full text link
    We develop various complementary concepts and techniques for handling quantum fluctuations of Goldstone bosons.We emphasise that one of the consequences of the masslessness of Goldstone bosons is that the longitudinal fluctuations also have a diverging susceptibility characterised by an anomalous dimension (d2)(d-2) in space-time dimensions 2<d<42<d<4.In d=4d=4 these fluctuations diverge logarithmically in the infrared region.We show the generality of this phenomenon by providing three arguments based on i). Renormalization group flows, ii). Ward identities, and iii). Schwinger-Dyson equations.We obtain an explicit form for the generating functional of one-particle irreducible vertices of the O(N) (non)--linear σ\sigma--models in the leading 1/N approximation.We show that this incorporates all infrared behaviour correctly both in linear and non-linear σ\sigma-- models. Our techniques provide an alternative to chiral perturbation theory.Some consequences are discussed briefly.Comment: 28 pages,2 Figs, a new section on some universal features of multipion processes has been adde

    Virtual Texture Generated using Elastomeric Conductive Block Copolymer in Wireless Multimodal Haptic Glove.

    Get PDF
    Haptic devices are in general more adept at mimicking the bulk properties of materials than they are at mimicking the surface properties. This paper describes a haptic glove capable of producing sensations reminiscent of three types of near-surface properties: hardness, temperature, and roughness. To accomplish this mixed mode of stimulation, three types of haptic actuators were combined: vibrotactile motors, thermoelectric devices, and electrotactile electrodes made from a stretchable conductive polymer synthesized in our laboratory. This polymer consisted of a stretchable polyanion which served as a scaffold for the polymerization of poly(3,4-ethylenedioxythiophene) (PEDOT). The scaffold was synthesized using controlled radical polymerization to afford material of low dispersity, relatively high conductivity (0.1 S cm-1), and low impedance relative to metals. The glove was equipped with flex sensors to make it possible to control a robotic hand and a hand in virtual reality (VR). In psychophysical experiments, human participants were able to discern combinations of electrotactile, vibrotactile, and thermal stimulation in VR. Participants trained to associate these sensations with roughness, hardness, and temperature had an overall accuracy of 98%, while untrained participants had an accuracy of 85%. Sensations could similarly be conveyed using a robotic hand equipped with sensors for pressure and temperature

    High Temperature Phase Transitions in Two-Scalar Theories with Large NN Techniques

    Full text link
    We consider a theory of a scalar one-component field ϕ\phi coupled to a scalar NN-component field χ\chi. Using large NN techiques we calculate the effective potential in the leading order in 1/N1/N. We show that this is equivalent to a resummation of an infinite subclass of graphs in perturbation theory, which involve fluctuations of the χ\chi field only. We study the temperature dependence of the expectation value of the ϕ\phi field and the resulting first and second order phase transitions.Comment: 11 pages, LaTex, includes 5 uuencoded postscript figures, OUTP-94-11
    corecore