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ABSTRACT

A terrain map of Yellowstone National Park was made by a digital computer using
the Earth Resources Technology Satellite (ERTS) multispectral scanner (MSS) data ob-
tained August 7, 1972. This color map shows plant community types and other classes
of ground cover in what is basically a wildland. The map comprises 12 classes, 6 of
which were mapped with accuracies of 70 to 95 percent. The remaining 6 classes had
spectral reflectances that overlapped appreciably, and hence those were mapped less
accurately. Maps made from ERTS data obtained at different stages of plant growth
should enable these classes to be accurately mapped also.

Techniques were devised for quantitatively comparing the recognition map of the
park with control data acquired from ground inspection and from analysis of side-
looking radar (SLAR) images, a thermal IR mosaic; and black and white, color, and
color IR aerial photos of several scales. Quantitative analyses were made in ten
40 km? test areas. Comparison mechanics were performed by computer with the final
comparison results displayed on line-printer output.

Forested areas in Yellowstone Park were mapped by computer using ERTS data for
less than one-fourth the cost of the conventional forest mapping technique for topo-
graphic base maps. Additional potential uses of computer mapping from ERTS data
include production of maps of plant community types, examination of changes in sur-
face cover types (such as forest fire burns or wildlife habitat) as a function of
time,and use of recognition maps as''data layers'in a computerized resource inform-
ation storage and retrieval system.

INTRODUCTION
Purpose and Goals

The stability of regional and local economics of areas surrounding large tracts
of wildlands are often closely tied to the intrinsic values and multiple-use manage-
ment of the resources within these areas. Such extensively-managed natural areas
commonly provide essential watersheds, wildlife habitat and outdoor recreation
while, with the exception of our National Parks, simultaneously yielding a steady
flow of forest products, minerals and forage. Unfortunately, the increasing resource
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requirements of our society are making it increasingly difficult to accomodate these
uses while preserving the natural values of these wildlands from which these benefits
are derived. In the case of the National Parks, there is a dichotomy between making
the parks available for use by steadily increasing numbers of visitors, and pre-
serving them as naturally functioning areas unaffected by man.

Proper administration of these areas requires an increased awareness of the
condition of a greater number of complex environmental variables. The availability
of quantitative information, characterizing the nature of various terrain cover-
types, greatly facilitates meaningfn1 analyses. Yet, the cost of obtaining such
data by field survey techniques has always been high, and is not always possible--
particularly in rugged terrain, or wilderness that must not be disturbed.

An investigation was made of the accuracy and usefulness of computerized sur-
face-cover mapping of the entire park and surrounding area using the 4-channel
multispectral scanner (MSS) data from ERTS-1. Previous studies in th2 north central
part of the park using low-altitude aircraft MSS data demonstrated the feasibility
of accurately mapping a wide variety of terrain classes automatically by computer
(Smedes, 1971).

Regional Setting

Yellowstone National Park (figure 1) is the oldest national park in the world
and the largest in the United States. Established just a little over a century ago
(March 1, 1872) it encompasses nearly 9,000 square kilometres (3,472 sq. mi.) of
Wyoming, Montana, and Idaho. It contains a wide range of climatic and vegetation
zones, wildlife, relief, land forms, and soil and rock types. It is the only known
place in the world where scientists can study the primal "plumbing'system of hot
springs and geysers--elsewhere such systems have been affected by mans intervention
and have changed or adjusted in response to that intervention.

The park is a broad plateau of young (Quaternary) volcanic rocks bordered on
the north, east, and south by an arcuate complex of ridges and dissected highlands
of older volcanic rocks and deformed prevolcanic sedimentary and metamorphic rocks.
Yellowstone Lake, about 350 square kilometres (137 sq. mi.) in area, dominates the
southeastern part of that plateau, and is one of the largest natural mountain lakes
in the U.S.

The major part of the plateau marks the site of ancient calderas which formed
by collapse as a result of the rapid expulsion of large volumes of ash flows whose
remnants form the fringe of the plateau (Keefer, 1972). Lava subsequently spread
across the floor of the caldera to form a coalesced mass of lava domes and flows
some of whose toe-like projections can be seen on the Pitchstone Plateau (shown by
the arrows at £, figure 2).

Previous Data

Topographic maps, geologic maps, and conventional aerial photographs have
provided important bases for plannin% and management of this large, basically prim-
itive area, but ERTS images provide for the first time a comprehensive pictorial
view of the entire park and its environs. Yellowstone Park occupies the central
part ofthe ERTS image shown in figure 2. This cloud-free image acquired August 7,
1972 documents the terrain during late summer. Other images capture the changes in
ground cover in response to seasonal differences, but were not analysed by computer
in this study.

Prior to ERTS images, the only complete pictorial base of the entire park was
a mosaic compiled from more than 80 high-altitude color aerial photographs taken by
NASA in 1969 (figure 3). Flights on three different days were required in order to
obtain this relatively cloud-free photographic coverage. Even so, large clouds can
be seen north of Hayden Valley near the center of the park, and along the central
eastern edge. In contrast, ERTS provides a synoptic view in a few seconds, in one
image.

Approach and Techniques
Two recognition maps of Yellowstone National Park and its surroundings were

prepared from ERTS MSS data as a part of this study. Both maps were created by a
computerized analysis technique known as the gaussian maximum likelihood ratio
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technique. "This statistical decizion-making algorithm assigns probability-density
functions to desired mapping classes using statistical data from “training'areas
for each mapping class. Ratios formed from these probability density functions are
evaluated by computer for selection of the most likely mapping class for each pic-
ture element (pixel) in the ERTS data over Yellowstone National Park.

. A simple recognition map was prepared initially to identify five general
classes of surfade-ccver: forest, rock and bare 30il, grassland; lowland, and
water. ‘A colored comput:: printout (figure 4) was used to display this map at a
scale of approximately 1:50,000 (Thomson and Roller, 1973). Information gained
from analysis of this map was used to subdivide the five initial classes into a
second, more sophisticated set of classes for. creation of a second recognition map
‘whose categories represent principal vegetation community types and other surface
"ecover types related to park management needs and land-use planning.::

SELECTION OF MAPPING CLASSES
- The initial five-class recognition map of Yellowstone National Park demounstra-
ted that it was possible to map basic types of ground cover such as forest, rock
and bare soil, water, and grass or lowland with reasonabie accuracy by computer.
Subdivision of these five mapping classes was initially proposed, as shown . in figure
4, to produce 22 specialized mapping classes. These mapping classes were selected
on the basis of (1) the naturally occurring terrain association units in Yellowstone
Park, (2) greatest probable difference in spectral reflectance to attain the great-
est likelihood of being mapped separately, (3) ecological significance, and (4)
importance to the user--those who are responsible for managing and making decisions
on land-use planning and alternative policies. Training areas were selected for
each of thése 22 mapping classes to obtain radiance histograms plus mean and stand-
ard deviation radiance values in each of the four ERTS-1 MSS channrels. Topographic
variation in any given mapping class was taken into account by selecting training
areas with differing slope and aspect. No measures were taken in this study to
either determine or compensate for effects of atmospheric attenuvation. Examples of
radiance histograms are given in Apperidix D. Included is one histogram of conifer-
ous forest with 40 to 100 percent canopy cover, three histograms for three density
levels of forest with a grass understory, and four histograms of surface-cover types
with similar spectral characteristics. Examination of tﬁe statistics for each of
the 22 mapping classes suggested that many were too similar spectrally at that
season (late summer) to be reliably mapped by the computer. Four of these 22 classes
were dropped after initial examination of the spectral statistics. Another six were
eliminated after examination of several small recognition maps which were produced
over selected parts of the park. Figure 5 illustrates how selection of the final
twelve mapping classes relates to the initial five mapping classes. The FOREST
class on the final recognition map is a combination of all coniferous tree species
for which training areas were selected. Crown cover for this class varies from
40 to 95 percent. Spectral statistics for lodgepole pine, douglas fir, and spruce-
fir, although slightly different. for each species, were masked by spectral "noise"
coming from understory vegetation which varied within and between the tree species.
It was also found that stands of coniferous trees infested with insects did not
have markedly different spectral statistics than healthy stands, again because of
the influence of understory vegetation. Only those forested areas with 25 percent
or more dead and bare trees had noticeably different spectral signatures. A winter
ERTS frame may permit accurate computer mapping of conifers by species, as well as
of insect-infested conifers if the understory vegetation were uniformly covered by
snow. (Visual examination of winter images indicate that saturation of signal would
not occur.) Two grass units (figure 4) were combined and renamed GRASS 3 (figure 5)
when it was found that they were both very similar spectrally to the initial GRASS 3
mapping class. Two light rock classes were similarly combined and renamed LIGHT
ROCK 3. GRASSLAND and LOWLAND, which should have been combined on the initial five- -
class tecognition map, were separated into a GRASS MEADOW or SLOPE class, and a
GRASS/BRUSH class after determining that LOWLAND GRASS, UPLAND GRASS, and ALPINE
MEADOW were all spectrally similar to GRASS MEADOW or SLOPE, and that GRASS/BRUSH
was separable spectrally from the GRASS MEADOW or SLOPE class. The initial ROCK
and BARE SOIL class was subdivided into LIGHT ROCK (felsic) and DARK ROCK (mafic)
classes,plus THERMAL DEPOSITS which have unusually high spectral radiance. Water
and shadow were both found to have very low radiance in agl channels, but shadows
were consistently higher than water. However they were combined and classed as
water because their spectral enveloges overlapped in all four channels. An 'un-
classified" category was added as the twelfth mapping class in order to handle
situations where a ground resolution element could not be identified by the computer
as any of the eleven classes for which it was trained. This turned out to be largely
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shallow water and muddy water. Appendix A contains a description of each of the
mapping classes used to produce the final recognition map. Detailed descriptions
of representative training areas for each of the final mapping classes is given in
Root and Smedes, 1974b (in preparation).

CREATION AND DISPLAY OF THE FINAL TWELVE-CLASS RECOGNITION MAP

Training areas for the 11 mapping classes discussed above were used to produce
the final recognition map of Yellowstone Park via automatic image analysis of ERTS
MSS data obtained 7 August, 1972, using the previously described maximum-likelihood
decision algorithm.

Two types of output display were used. The first (figure 7) is direct computer
line-printer output, where each printed character represents an ERTS ground reso-
lution element. By printing alternate cells in both rows and columns the final
map product consisted of ten strips of line printer output 2.4 metres long mosaiced
together to produce a 2.4 by 2.6 metre map with an approximate scale of 1:50,000.
This map display was used primarily for evaluating the accuracy of the computer map.
Its large dimensions limit its practical usefulness in a typical office environment.
Consequently a second type of display technique, a color ink-squirter map, was
used to produce a map more comgatible with other existing maps of Yellowstone Park_/
Figure 8 is a reduced copy of the original colored map. Each ground resolution
element on this display version of the recognition map is represented by a micro-
scopic color dot. Groups of ecologically similar mapping classes were coded in
similar colors to highlight natural relationships among mapping units.

_/This map was prepared by Mead Corporation of Dayton, Ohio from tapes supplied
by the Environmental Research Institute of Michigan. The original product was pre-
pared with 36 resolution elements to the inch and was about 1 x 1.5 metres in size.

A significant distortion of scale (an apparent east-west stretching) was intro-
duced into the ink-squirter map as a result of the ERTS pixel (the cell, or ground
resolution element) with dimensions of 57 x 79 metres being displayed as a square.
The problem has since been resolved between the Environmental Research Institute
of Michigan and Mead Corporation and relatively undistorted color ink-squirter maps
can now be produced.

CONTROL DATA

Several types of aerial photographs and maps were used as ground reference
data for checking the accuracy of the computer recognition map. These data consist-
ed of the 1:125,000 color mosaic (figure 3) of the entire park, 1:110,000 and
1:55,000 stereo color infrared photos over the entire park, surficial and bedrock
%eologic maps at a scale of 1:125,000, topographic maps at scales of 1:250,000,

:125,000 and 1:24,000, and a control reference map created by interpretation of
all of the above data over the southern half of the park. Several east-west and
north-south 1:20,000 flight strips of low altitude color photos were also used as
a close-up spot-checking reference when questions arose about composition of surface
material. On-site field spot-checking was done initially before the control map
was created. A detailed discussion of the quality and usefulness of the control
data may be found in Root and Smedes, 1974a (in preparation).

EVALUATION TECHNIQUES

Because the 12-class recognition map of Yellowstone Park was produced by the
computer through a statistical decision-making process, the map must be examined to
determine accuracy of identification for each mapping class. Two basic methods
were used to analyse mapping accuracy. First, the 12-class map was compared qual-
itatively with the control data to examine general terrain features and the overall
accuracy performance of each mapping class. Second, 10 test areas were selected
throughout the park in which detailed computerized comparisons were made between
the recognition map identifications, the control map and the corresponding control
data obtained from 1:110,000 NASA high altitude color infrared photography. Each
of the accuracy analysis methods is described in detail below.

Qualitative Analysis

General terrain features on the 12-class recognition map (figure 7) were
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compared with the control data of Yellowstone Park and the following observations
were made.

The major mountain ranges, drainage patterns, major stream channels, and for-
est clearings (meadows, rock outcrops, and forest fire burns) greater than 2.4 h.a.
(6 acres) are sharply and accurately portrayed on the ink-squirter version of the
recognition map.

Three levels of coniferous forest canopy density (40-95%; 15-40%; and 0-15%)
can be distinguished on the recognition map. The two lower-density forest classes
can be further distinguished by the presence or absence of understory vegetation.
Subtle differences in density of forest canopy resulted in a delicate mottling on
the computer map, which shows these differences more accurately than was possible
on the control map.

Overall, WATER, CONIFEROUS FOREST, LIGHT ROCK 3, and GRASS 3 were most accu-
rately classified. Less accurate were GRASS, LIGHT ROCK, and GRASS 2. Least
accurate were THERMAL DEPOSITS, LIGHT ROCK 2, GRASS/BRUSH, and BRUSH/DARK or SHAD-
OWED ROCK, for reasons discussed above.

Each of the mapping classes was examined individually by making qualitative
comparisons with the control data. A summary of observations for each class is
recorded in Appendix C of Root and Smedes, 1974b (in preparation).

Outlines of forest fire burns as much as 20 years old can be pinpointed on
the recognition map, but the burns could not be mapped as a unique category because
each burn is a different age and consequently is at a different stage of plant
succession. The forest fire burn areas consist of varying amounts of GRASS, GRASS/
BRUSH, BRUSH/DARK or SHADOWED ROCK, GRASS 2, and LIGHT ROCK 2, depending on their
age.

Large water bodies (lakes) were virtually 100 percent correctly classified.
Shorelines for the most part are sharply defined, but are affected in places by
boundary effects. Some ground resolution cells falling over shoreline were left
unclassified because the watershore spectral mixture did not appear similar to any
existing mapping classes. Some shoreline cells containing light colored sandy
beaches or felsic rock outcrops were classified as BRUSH/DARK or SHADOWED ROCK,
because the spectral mix of WATER and LIGHT ROCK very closely approximates the
spectral signature for BRUSHDARK or SHADOWED ROCK. It ies possible, at additional
computer processing expense, to estimate the proportions of each ground cover type
in an individual cell (Nalepka and others, 1972).

Long narrow water bodies and those with areas less than 2.4 h.a. (6 acres)
frequently were not classified as water, again because of boundary effects. In
rare instances deep shadows cast by steep, rugged terrain were classified as water.
Shallow water and streams from 50 to 150 metres wide most frequently were not clas-
sified as WATER but as BRUSH/DARK or SHADOWED ROCK. This was due largely to the
combined effect of the spectral signatures of WATER and stream bew gravel, sand,
silt and mud forming a signature nearly identical to BRUSH/DARK or SHADOWED rock.
Occasionally ground resolution units falling over shallow water did not have
spectral signatures similar to any of the 12 mapping classes, and consequently were
coded as unclassified on the recognition map.

Roads per se were not detected on the reco%nition map, but roadbed clearings
greater than 150 metres wide through dense coniferous forest provided enough
spectral contrast to be shown on the computer map.

Developed areas were prefonderantly shown as BRUSH/DARK or SHADOWED ROCK on
the recognition map. Dark-colored roof tops and bituminous paving surfaces are
the major contributors to this relatively dark mapping class.

Turbid Lake was not classified as any of the 11 mapping classes used for
recognition training because its signature is unique, due to the extremely turbid
water carrying suspended particles from numerous hot springs surrounding the lake.
It and man{ areas of shallow water comprise the 12th class. Turbid Lake could be
automatically identified as an additional TURBID WATER mapping class if it were
considered an important enough category to be recognized separately.

The majority of misclassifications, with two exceptions, were due to boundary
effects. Three types of boundary effects were noticed upon close examination of
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the recognition map. The first was two ground-cover materials combining to form
an unrecognized signature, and the second was two types of ground-cover materials
combining to form a recognizable but erroneous signature. The third and most
common boundary effect was the combination of two ground-cover materials to form
a signature correctly identifying cthe two materials as a mixture. An example of
the first type of boundary effect is an unrecognized combination of WATER and
CONIFEROUS FOREST; the second, water combined with light sandy beach being iden-
tified as BRUSH/DARK or SHADOWED rock; and the third, solid grass and solid
coniferous forest being recognized as though grass with a thin, evenly dispersed
coniferous tree cover.

The two misclassification exceptions were caused by an overlapping of spec-
tral signatures of three particular mapping classes (see radiance histograms in
Appendix D). Signature envelopes of LIGHT ROCK 2, GRASS/BRUSH, and BRUSH/DARK
or SHADOWED ROCK overlapped each other within all four data channels, causing
larger numbers of false alarm and false dismissal errors than were anticipated.
LIGHT ROCK 2 and GRASS/BRUSH were especially similar in spectral character and
were frequently mistaken for each other by the recognition routines. These two
mapping classes should have different spectral signatures during late spring or
early summer when the brush cover is verdant and in bloom, increasing the likeli-
hood of its separability from LIGHT ROCK 2. A second problem was the similarity
between thermal deposits and snow and, less frequently, very light colored felsic
rock or pure limestone. Consequently the THERMAL DEPOSIT mapping class occurs
frequently in the major mountain ranges depicting snow and highly reflective rock
outcrops. Fortunately the true thermal deposits in Yellowstone Park are restricted
to lower altitudes, below timberline. Therefore the true THERMAL DEPOSITS and
associated thermally altered rock can be accurately separated from snow and highly
reflective rock by human interpretation of the recognition map in terms of the
altitude and location (relative to major mountain ranges) of the point in question,
using ERTS data obtained in late summer.

Quantitative Analysis

Ten test areas were selected throughout the park in which to perform a
quantitative check on recognition map accuracy. These test areas are all approx-
imately 5 by 8 kilometres in size (40 square kilometres). This size was chosen
after examining overall patterns formed by individual mapping units throughout
the park. These overall patterns were considered desirable to check in their
entirety because they represent identifiable ecological units, such as alpine
mountain ranges, subalpine montane forests, extensive grasslands (e.g. Hayden
Valley), large water bodies, areas of thermal activity, etc. Test areas were
not randomly placed, but rather situated throughout the park so as to include
representative examples of all 11 types of mapping units.

Test area shape was chosen as a rectangle in order to sample the greatest
amount of variation in ground cover types with the greatest efficiency as dem-
onstrated by Oosting (1956:42). Test areas were oriented with the long axis
either parallel or perpendicular to the orbital path of the ERTS satellite, de-
pending on the extent and shape of the pattern of ground-cover types being sampled.

Recognition map data for each test area were obtained from the computer line-
printer output version of the recognition map which represents identification
symbols for every other ERTS pixel (both in rows and columns). Each test area
thus contained agproximately 2,500 pixels. Test areas oriented perpendicular to
the satellite orbital path were 68 pixels long and 37 pixels wide. Those oriented
parallel to the orbital path were 49 pixels wide and 53 pixels long.

As an example, test area 10 located 4 kilometres south of Heart Lake is shown
in the form of a black and white photograph (figure 9), control map (figure 10),
computer line-printer recognition map (figure 7%. and color ink-squirter map (fig-
ure 11). Appendix B is a listing of all test areas used, including their locations
and a general description of the terrain cover in each test area.

With the help of ERTS gray-scale computer maps, boundaries of each test area
were positioned as carefully as possible to match ground terrain features with
corresponding spatial patterns on the recognition mag. Symbols on the recognition
map representing ERTS pixels were then coded on punched computer cards for each
test area. In test areas 1 and 10 the control maps were coded to represent the
control mapping classes as separate colors. Using a TV level slicing system the
total area of each mapping class was given in digital readout. These data were
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used as a control comparison for point-count area estimates made in each of the ten
test areas.

The recognition map and control data for each test area, coded on punched com-
puter cards, were analysed by a computer program written to perform the mechanics
of comparing recognition map data to corresponding control data. The program per-
forms three types of data comparisons. First it compares, pixel for pixel, the
recognition map data with the corresponding control data, tallying correct and in-
correct identifications. Second, an area comparison is made, with a tally of per-
cent area correctly identified for each mapping class. Figures 12 and 13 represent
conceptual illustrations of point and area comparisons respectively. Third, a
pairwise analysis is performed using the point comparison data. For each test
area the pairwise analysis indicates the amount and frequency of errors of comm-
ission and omission, both of which are helpful in evaluating the overall recogni-
tion map accuracy. Appendix C contains, for test area 10, an example of the output
data for these three comparisons, plus a map of the test area indicating where
misclassifications occurred, according to the point comparison analysis. A more
detailed explanation of the computer program and a program listing are provided
in Ranson, Root, and Smedes (in preparation).

The final results of the quantitative analysis are summarized in Table 1.
Point comparison results for all test areas are consistently lower than area com-
parison results for two reasons. First, it was difficult to assure that recogni-
tion map and control data were properly registered. Misregistration of + one
gixel significantly compounded the effect of boundaries, as gixels located near

oundaries were tallied as misclassifications when in fact they were correctly
identified on the recognition map. Second, in areas of rugged topography,

relief displacement also caused local misregistration between the recognition
map and control data. Area comparisons showed markedly higher identification
accuracies because the effects of misregistration and relief displacement were
minimized. However the area comparison figures must be considered in light of
false alarm errors. The area comparison computes the percent area correctly
identified by dividing the area of a given class on the recognition map by the
control data area for that class as obtained from a point count on the control
data. If the percent correctly identified is greater than 100 percent the excess
over 100 percent is tallied as false alarm error. A particular class may be

shown as 100 percent accurate areawise, but occurrence of false alarm (commission)
errors for that mapping class suggests the likelihood of corresponding errors of
omission. Therefore the accuracy of that mapping class is less than that indicated
in the area comparison, by approximately the amount of the false alarm error.

Overall, the quantitative results have closely substantiated the qualitative
examination of the recognition map. With some exceptions the same approximate
order of identification accuracies is shown by the quantiative comparison results.
The order of decreasing recognition accuracy changed between point and area com-
parisons,primarily because mapping classes with small areas and/or long, thin
shapes tended to be overlooked in the point comparison analysis because of mis-
registration problems. Especially affected were LIGHT ROCK, GRASS 2, THERMAL
DEPOSITS, and CONIFEROUS FOREST.

According to area-comparison results, mapping accuracies most frequently
ranged from 40 to 100 percent, with 6 maﬁping classes showing accurac.es better
than 70 percent in most test areas--WATER, CONIFEROUS FOREST, LIGHT ROCLK 3, GRASS
3, GRASS 2, and BRUSH/DARK or SHADOWED ROCK. The identification accuracy of BRUSH/
DARK or SHADOWED ROCK was rated considerably lower in the qualitative analysis
because of the observance of numerous false alarm errors, particularly along
streams and shorelines. As expected, the mapping classes which are spectrally
similar to each other, especially GRASS/BRUSH and LIGHT ROCK 2, had lower rec-
o%nition accuracies. THERMAL DEPOSITS also had a low recognition accuracy because
of the previously discussed spectral similarity to snow and outcrops of highly
reflective rock. Altogether, the mapping accuracies obtained from the quantitative
analysis are believed to be lower than the actual mapping accuracies because of
misregistration, boundary effect, and relief displacement problems in the compar-
ison techniques.

The problem of reducing boundary effects in the quantitative analysis Zro-
cedure was addressed by making point counts a second time in test areas 1, 4,

and 10,directly from 1:110,000 NASA high altitude color infrared photos. Test
areas 4 and 7 contained virtually flat terrain, but test area 10 contained more
than 300 metres of relief. Table 2 shows that area-comparison accuracies for test
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areas 4 and 7 were higher using the photo as control data rather than the control
data reference map. Point-comparison results were lower however, because using

the photo rather than the control data map effectively introduced additional bound-
aries as more detail was extracted from the photo. This additional detail permitted
a more accurate area estimate of control data mapging units, hence the better area-
comparison results, but the introduction of more boundary effects resulted in even
lower accuracy figures in the point comparison. Test area 10, with 305 metres of
relief, did not show an improvement in area comparison accuracies. The control map
was corrected for relief displacement, but the photo control data were not. Dif-
ferences in the point-comparison results are probably due to relief displacement
effects, and differences in the area-comparison results are probably due to relief
displacement effects on the photo control data around the borders of the test area.
Minor relief displacement within the ERTS imagery is undoubtedly contributing to
misregistration problems in the point-comparison analysis for this test area and
other containing rugged terrain. Orthophotos used as control data may solve this
problem. Misregistration errors would still be likely to affect point-comparisou
results, but more-accurate area comparisons could be obtained if point counts were
made directly from ghotos corrected for relief displacement. This procedure would
eliminate the need for producing the control map, which is a costly and time-
consuming step in the accuracy analysis process--six man-months were required to
produce a control map for the southern half of Yellowstone National Park. A
further aid in obtaining better comparison results would be geometric correction
(rectification) of the ERTS image before creation of the recognition map. The use
of completely rectified ERTS data would greatly facilitate the process of locating
corresponding boundaries of the test areas, and would produce a rroduct that could
be used as a precision map, singly or as an overlay with other maps of an identical
scale. However, in areas of exceptionally high relief, a minor amount of relief
displacement may still be evident on the rectified map.

COST COMPARISON OF MAPPING FORESTED AREAS

A comparison was made between the cost of producing a green forest overprint
by conventional photogrammetric mapping techniques and the cost of obtaining a
computer-interpreted forest map using ERTS data. The CONTFEROUS FOREST mapping
class was chosen for this cost comparison because of its importance as a land-cover
type and because of readily available and accurate data on the cost of conventional
mapping of woodland. The cost comparison demonstrates that a forest versus
nonforest map can be produced by computerized interpretation of ERTS data for less
than one fourth the cost of conventional mapping techniques.

The computer-interpreted forest map can be produced in a matter of one or two
weeks and contains timely information which can be freguently updated to account
for alterations of forest cover resulting from forest fires, avalanches, landslides,
and (for application outside Yellowstone Park) changes due to lumbering, road
construction, or development. The computer FOREST mag is produced by using a
consistent statistical decision-making algorithm which assures the use of uniform
identification criteria throughout the entire map. In contrast, the conventional
foiest mapping technique 1s subject to possible inconsistencies in human interpret-
ation.

Another advantage of the computer-interpreted FOREST map is its ability to
show vast numbers of small clearings, down to the minimum resolution of the sensing
system used (0.44 hectare for ERTS data). A delicate mottling of forest and non-
forest classes can be mapped to reflect natural growth Eatterns of vegetation. It
is presently too costly and time consuming to map this kind of detail by conventional
means.

The final 12-class recognition map of Yellowstone Park demonstrated the
ability of the computer mapping technigue to distinguish not one, but three levels
of forest density, indicating that it is possible and cost-effective to produce
more than just a forest versus non-forest map.

POTENTIAL USES OF THE YELLOWSTONE PARK RECOGNITION MAP
The 12-class computer generated map of Yellowstone Park has numerous
potential applications which could aid in the planning, management, and scientific

resea{ch within the park. These possible applications are discussed below in
detail.
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Plant Community Map

The classes on the existing Yellowstone Park recognition map and the addi-
tional cover types that could be separated ulini winter, late spring, and/or
early summer ERTS frames demonstrate the feasibility of producing maps of plant
community types for wildland areas such as Yellowstone Park. Such maps would be
a valuable contribution to the basic data information which the National Park
Service has been collecting over national parks before comprehensive planning,
design, environmental impact analysis, or development are undertaken.

Future Applications
Examination of Surface Cover as a Function of Time

A computer-generated recognition map indicates not only the location of
individual mapping categories, but also the total area occupied by each. Such
information is obviously of great value over agricultural areas, but also may be
of use in a national park for inventory purposes. If recognition maps containing
identical mapping classes are produced at given time intervals, changes in the
areas of mapping classes as a function of tine may permit valuable insights into
such processes as (1) average surface area burned annually by forest fires,

(2) analysis of wildlife habitat via dynamic changes in vegetation types used for
food and cover, (3) trends in snowpack accumulation and water levels in lakes

and streams, (4) changes in hydrothermal geologic activity as reflected in changes
of surface thermal deposits and vegetation, and (5) changes in areas of insect-
infested timber.

THE RECOGNITION MAP AS A DATA LAYER IN A RESOI'*CE INFORMAT1luiv SYSTEM

A digitized multi-layered resource information grid utilized for land-use
planning must contain data on the character of the surface cover. A computer-
generated recognition map could provide this type of information, in a form
readily entered into the grid storage system. In addition to the surface cover
type each grid point in the rescurce information system might contain digitized
information on topography, precipitation, zeolog , soils, and socio-economic
data, among others %Snedel and others, 1974). e National Park Service envisions
such a multi-layered information storage and retrieval system for major areas of
the National Park System that require new or redirected planning, design, and
development with concurrent analysis of environmental impacts.
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TABLE I. SUMMARY OF MAPPING ACCURACY RESULTS OBTAINED
BY QUANTITATIVE POINT AND AREA COMPARISONS

Area comparison results are consistently hig.ier because errors introduced by
misregistration and relief displacement were minimized. Means were weighted

in

proportion to the area of each mapping class in each test area. All figures are

expressed In percent accuracy of computer identification.

POINT COMPARISON SUMMARY - ACCURACY TABULATION

MAPPING TEST

CLASS AREA 1 2 3 4 5 6 7 8 9
FOREST 67 22 59 47 65 60 82 79 77
LT ROCK 3 21 17 -- 65 -- 40 38 -- 19
LT ROCK 2 12 22 0 -- -- -- -- -- 16
LIGHT ROCK -- 3 -- -- 18 33 -- -- 38
GRASS 3 17 12 50 -- 18 17 -- -~ 24
GRASS 2 -- 17 24 -- 21 6 -- -- 6
GRASS -- 17 20 § 23 6 -- -- 4
GRASS/BRUSH 6 23 29 -- 42 18 -- -- --
BRUSH/DK RK 35 -- -- 51 -- -- -- -- 38
THERMAL DP -- -- -- -- 50 31 -- -- --
WATER -- -- -- -- 16 13 -- 99 --

AREA COMPARISON SUMMARY - ACCURACY TABULATION

MAPPING TEST

CLASS AREA 1 2 3 4 5 6 7 8 9
FOREST 91 64 67 70 100 66 83 93 100
LT ROCK 3 100 100 -- 100 -- 100 100 -- 100
LT ROCK 2 37 100 100 -- -- -- -- -- 100
LIGHT ROCK - 14 - -- 91 100 .- -- 44
GRASS 3 100 68 100 -- 100 100 -- -- 56
GRASS 2 -- 100 100 -- 100 100 -~ -- 98
GRASS - 39 35 8 74 10 - - 27
GRASS/BRUSH 29 48 100 .- 55 100 -- -- --
BRUSH/DK RK 100 -- - 70 -- - - -- 100
THERMAL DP -- .- -- -- 100 43 -- .- --
WATER -- -- -- - 22 42 -- 100 --
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TABLE II. COMPARISON OF ACCURACY RESULTS OBTAINED FROM THE CONTROL
DATA REFERENCE MAP VERSUS HIGH ALTITUDE AERIAL PHOTOGRAPHS

All numbers are expressed in percent accuracy of computer identification.
POINT COMPARISON SUMMANY

MAPPING TEST

CLASS AREA 4 4 (PHOTO) 7 7 (PHOTO) 10
FOREST 47 37 82 83 30
LT ROCK 3 65 49 38 23 4
LT ROCK 2 -- -- -- -- 8
LIGHT ROCK - -- - - 0
GRASS 3 - -- - 3 40
GRASS 2 - - -- -- 28
GRASS - - -- -- 42
GRASS/BRUSH -- -- -- -- --
BRUSH/DK RK 51 40 -- -- 18
THERMAL DP - - -- - -
WATER - - -- - -

AREA COMPARISON SUMMARY
(Corrected for false alarm error)

MAPPING TEST

CLASS AREA 4 4 (PHOTO) 7 7 (PHOTO) 10
FOREST 70 76 83 97 44
LT ROCK 3 84 100 85 97 91
LT ROCK 2 - -—- -- -- 99
LIGHT R0CK -- -- -- -- 53
GRASS 3 - -- -- 100 79
GRASS 2 -- —- -- -- 96
GRASS -- -- -- -- 28
GRASS/BRUSH -- -~ -- -- --
BRUSH/DK RK 70 95 -- -- 68
THERMAL DP -- - -- -- --
WATER -- -- -- -- --

10(PHOTO)

APPENDIX A. DESCRIPTION OF MAPPING CLASSES FOR FINAL 11 CLASS RECOGNITION MAP

CLASS NAME CODE DESCRIPTION
NAME
CONIFEROUS FOREST CF 40 to 95% coniferous tree canopy consisting of
lodgepole pine, spruce-fir, douglas fir, ite-bark
pine, and other less common species. Also includes
shadowed forests on north facing slopes.
LIGHT ROCK 3 LR-3 15 to 40% coniferous tree canopy cover with non-

vegetated understory consisting of rock outcrops,
rock rubble, talus, or coniferous litter mat.
Locally includes dead trees or cured vegetation

understory.

LIGHT ROCK 2 LR-2 5 to 15% coniferous tree canopy with non-vegetated
understory consisting of rock outcrops, rock rubble,
talus, or cured grass.

LIGHT ROCK LR-1 Light colored rock outcrops, rubble, or talus slopes

with bare soil, and very sparse infrequent vegetation
representing most life forms. Locally includes cured

herbaceous vegetation on dark rock.

GRASS 3 G-3 15 to 40% coniferous tree canovy with grassy under-
story. Infrequent shrubs, bare scoil, and rock

exposures may be present.
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GRASS 2 G-2 5 to 15% coniferous tree cmogy with grassy under-
story. Locally includes sagebrush, willows, or
small tree reproduction. Rock exposures and bare
soil are locally present but are infrequent.

GRASS G-1 Consists mostly of grass and other herbaceous forbs.
Isolated trees, shrubs, brush, bare soil, and rock
exposures may be present in insignificant amounts.
GRASS/BRUSH GS Consists of approximately equal amounts of grass
and brush cover. Bare soil is present but not
frequent.

BRUSH/DARK OR B/DR

Consists of two classes that are similar spectrally,
SHADOWED ROCK

but are very different genetically.

1. 70 to 90% brush cover, most cormonly big
sagebrush or bitterbrush. Grass and bare
soil account for the remaining cover.

2. Dark colored rock outcrops and related
rubble, or lighter colored rocks or rock
rubble which is darkened by shadow in
areas of high relief. Also may contain very
sparse infrequent or cured vegetation rep-
resenting most herbaceous life forms. Locally
includes sand, gravel, and clay exposures on
steep and south facing slopes.

THERMAL DEPOSITS TD Consists mostly of siliceous sinter, travertine,
and associated weathering products. Lesser cont-
ributions come from sparse meadow grasses and
occasional shrubs and coniferous trees.

WATER w Lakes, ponds, and streams with clear water more than

10 feet deep. The signature of shallow clear water
is significantly affected by the bottom material,
and turbid water is affected by the spectral sig-
nature of the suspended particles.

APPENDIX B. LOCATION AND GROUND-COVER DESCRIPTION FOR THE 10 TEST AREAS USED FOR
COMPARING THE FINAL 11 CATEGORY RECOGNITION MAP WITH CONTROL DATA.

Each test area is approximately 5 by 8 kilometres (3 by 5 miles) or 40 km2 (15 mi2)
in area. For each test area principal ground cover types are listed in order of
decreasing abundance.

TEST LOCATION DESCRIPTION OF GROUND SURFACE COVER
AREA
1 10 km (6.2 mi) northeast Subalpine timber and grassland with 490 metres

of Saddle Mountain in the
northeast portion of the
park.

(1,600 feet) of relief. Principal ground cov-
er types are coniferous forest, light rock 2,
grass/brush, and grass 3. Traces of light
rock 3 and dense brush are present.

2 11 km (6.8 mi) east of Meadows and wetlands associated with the
Tower Junction in the Lamar River floodplain, and grass/brush slopes
northwest portion of the north and south of the Lamar River valley.
park. Total relief is 640 metres (2,100 feet).
Principal ground cover types are grass/brush
and grass. Less common are grass 3, light
rock, coniferous forest, grass 2, and light
rock 2.
3 10 km (6.2 mi) southeast Coniferous forests and woodlands intermixed

of the town of Mammoth in
the northwest portion of
the park.

with grass and grass/brush meadows. Total
relief is 610 metres (2,000 feet). Princi-
pal ground cover types are coniferous forest,
grass, grass 3, grass 2, and less commonly
grass/brush.
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4 Madison Valley immediately Open coniferous woodland intimately
northwest of West Yellow- intermixed with dense brush cover on flat,
stone in the west central nearly level terrain. Principal ground
portion of the park. cover types are brush, coniferous forest,

and light rock 3.

5 Hayden Valley, in the cen- Rolling grassland and brushland bordered

tral portion of the park. by coniferous forest. Total relief is 122
metres (400 feet). The Yellowstone River
flows through the northeast portion of the
test area. Principal ground cover types
are grass/brush, grass, and coniferous
forest. Less common are water and thermal
deposits.

6 Lower Geyser Basin and Thermal deposits and associated meadows,
immediate surroundings in wetlands, and lakes, surrounded by conif-
the west central portion erous forest. Total relief is 92 metres
of the park. (300 feet). Principal ground cover types

are coniferous forest, grass, and thermal
deposits. Less common are grass 3, light
rock, light rock 3, and water.

7 10 km (6.2 mi) west of Entirely coniferous timber, with a total
Lower Geyser Basin in the relief of 153 metres (500 feet). Princi-
west central portion of pal ground cover types are coniferous
the park. forest and light rock 3. A trace of grass

3 is present. *

8 Central portion of Yellow- Entirely composed of water except for Frank
stone Lake, including Frank 1Island, which has a relief of 23 metres
Island. (74 feet) and is composed of coniferous

forest, light rock, grass 3, and grass 2.

9 The Trident, in the ex- Subalpine and alpine forests, meadows,
treme southeast portion tundra, and rock outcrops. Total relief
of the park. is 610 metres (2,000 feet). Principal

ground cover types are light rock, conif-
erous forest, grass 3, dark and/or shadowed
rock, and light rock 3. Less common are
light rock 2, grass, and grass 2.

10 4 km (2.5 mi) south of Coniferous forests and woodlands with high
Heart Lake, in the south relief, grasslands, and wetlands of the
central portion of the Snake River flood plain. Total relief is
park. 305 metres (1,000 feet). Principal ground

cover types are grass 3, coniferous forest,
grass, and grass 2. Traces of dark rock,
light rock, light rock 2, and light rock 3
are also present.

APPENDIX C. RESULTS OF POINT, AREA, AND PAIRWISE COMPARISONS BETWEEN THE RECOGNITION

MAP AND CONTROL DATA FOR EACH OF THE 10 TEST AREAS

The computer program which performs the comparison mechanics prints four pages of
The first is a map of the test area on which symbols represent misclas-
sified ground resolution elements according to point comparison results. The
second page is a class by class summary of point comparison results. The third
page is a similar summary of area comparison results. The fourth page is a pair-
wise array, in which the diagonal is the number of ground resolution elements
correctly identified for each class according to point comparison results; rows
represent false alarm (commission) errors for each class; and columns represent

output.

false dismissal (omission) errors for each class.
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MAP OF CORRECTLY IDENTIFIED GROUND TRUTH UNITS FOR TEST AREA 10
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FIGURE 1. INDEX MAP. Yellowstone National Park shown in black.




LV U Bvg

1 S
1‘»J

ulie:

.70 LB IR TR | 18-30
07672 C NG---g)dfns?as N Naa-ag i) 1020 68 o7 b SUR ELS3 AZi33 195-8208-G-1 N0 iL WASA ERISELIR IS 174pa-7 @)

APPROXIMATE SCALE

10 0 10 20 30 MILES
L . S |So—— J
Logryrdy + 1 . | T T 1
10 0 10 20 30 KILOME TERS

FIGURE 2. LANDSAT-1 (ERTS-1) COLOR COMPOSITE IMAGE OF YELLOWSTONE
NATIONAL PARK AND VICINITY. Park boundary shown by white line.
Image 1015-17404, August 7, 1972. Copied from Smedes (1976,

o, 313).
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FIGURE 3. AIRPHOTO MOSAIC. Compiled from high-altitude aerial color
photos furnished by NASA in 1969. Boundary of Yellowstone National
Park shown by thin line and bottom edge of mosaic. Copied from
Smedes (1976, p. 314).
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FIGURE 4. FIVE-CLASS RECOGNITION MAP. In order of decreasing gray
tone the classes are water, forest, rock, grass, and lowland.
Photo reduced from original color printout about 8 x 8 feet.
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Forest

Grass

Lowland

Rock

Water

Lodgepole pine (mature stand)

lodgepole pine (immature stand)

Lodgepole pine infested by bark beetles

Douglas fir

Spruce-fir

{7-65% forest with grass understory

40-65% forest with rock or bare soil
understory

Brush

Grass-brush

Unland grass

Grass +5-15% trees
Grass +15-407 trees

Lowland grass
Lowland shrub
Alpine meadow

Light rock

Dark rock

Thermal deposits
Rock +5-157 trees
Rock +15-407 trees

Shadow
Water

FIGURE 5. SUBDIVISION OF FIVE INITIAL MAPPING CLASSES INTO 22
SPECIALIZED MAPPING CATEGORIES. These categories were selected
on the basis of (1) natural occurrence, (%) differences in
spectral character, (3) ecological significance, and
(4) importance to the user.
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MAPPING CLASSES ON
INITIAL FIVE CLASS
RECOGNITION MAP

FOREST

GRASSLAND
LOWLAND

ROCK AND
BARE SOIL

WATER

MAPPING CLASSES ON
FINAL TWELVE CLASS
RECOGNITION MAP

FOREST (40-100% coniferous tree canopy)

GRASS 3 (15-407% coniferous tree canopy with
grass understory)

GRASS 2 (5-15% coniferous tree canopy with
vegetated understory)

LIGHT ROCK 3 (15-40% coniferous tree canopy
with non-vegetated understory)

LIGHT ROCK 2 (5-15% coniferous tree canopy
with non-vegetated understory)

GRASS/BRUSH
GRASS MEADOW OR SLOPE

LIGHT ROCK
THERMAL DEPOSITS
DARK ROCK/BRUSH

WATER

UNCLASSIFIED

FIGURE 6. RELATIONSHIP OF FIVE INITIAL MAPPING CLASSES TO THE 11
FINAL MAPPING CATEGORIES SELECTED AFTER ANALYSIS OF ALL SPECIALIZED

MAPPING CATEGORIES,

A twelfth category, ''unclassified", represents

those ground resolution units whose spectral-signature was unlike :
any of the 1l mapping cctegories used on the final recognition map.
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FIGURE 8. COMPUTER-GENERATED RECOGNITION MAF OF YELLOWSTONE NATIONAL
PARK AND VICINITY. Made from computer-compatible tapes for LANDSAT-1
(ERTS-1) image 1015-17404 of August 2, 1972. Color map copied from
Smedes (1976, p. 315).
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FIGURE 8. COMPUTER-GENERATED RECOGNITION MAP OF YELLOWSTONE NATIONAL PARK AND VICIN-
ITY. Photo reduction of original colored ink-squirter map depicting the 12
categories described in the text. Apparent east-west stretching results from the
rectangular ERTS pixel being printed as a square. ERTS-1 data of August 7, 1972.
Map code, starting from left of row of squares (colored on original):

Thermal deposits and snow

Brush/dark rock

Water

Coniferous forest

Grassland with 15 to 407 forest canopy

Light rock with 15 to 407 forest canopy

Grassland with 5 to 15% forest canopy

Grassland

Grass/brush

10. Light rock with 5 to 15% forest canopy

11. Light rock

12. Muddy and/or shallow water

OO ~dO LW

1393-8

URIGINAL PAGR



FIGURE 9. AERIAL PHOTOGRAPH OF TEST AREA 10.
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FIGURE 10. MAP SHOWING CONTROL DATA
about 4 km south of Heart Lake.

FOR TEST SITE 10. Site i% located
Approximate scale ! 50,000.
Classes, described in text, are:

Cc CONIFEROUS FOREST LIGHT RCCX 2
Gl  GRASS ¢ L3 LIGHT ROCK 3
G2 GRASS 2 B BRUSh
3 GRASS 3 DR  DARK ROCK
w WATER
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FIGURE 12. CONCEPTUAL ILLUSTRATION OF POINT-COMPARISON TECHNIQUE. Each square on
the recognition map represents an ERTS pixel, or ground resolution element. W,
X, Y, and Z are hypothetical mapping classes, shown as they would appear on the
control data map (top) and the recognition map (bottom). Large dots on each layer
represent point comparisons of individual recognition map pixels with the corre-
sponding control data. The fourth dot from the left indicates the potential
effect of boundaries on the accuracy of point comparison results.

1397

ORIGINAL PAGE 1
OF POOR QUALITY




A A MDA N

CONTROL

FIGURE 13. CONCEPTUAL ILLUSTRATION OF AREA-COMPARISON TECHNIQUE. Each square on
the recognition map represents an ERTS pixel, or ground resolution element. W,
X, Y, and Z are hypothetical mapping classes, shown as they would appear on the
control data map (top) and the recognition map (bottom). Total areas for each
mapping class are determined by point counts on both the control data map and
recognition map, and are utilized for calculation of area comparison mapping

accuracies.
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