13 research outputs found

    Biomimetic insulin-imprinted polymer nanoparticles as a potential oral drug delivery system

    Get PDF
    In this study, we investigate molecularly imprinted polymers (MIPs), which form a three-dimensional image of the region at and around the active binding sites of pharmaceutically active insulin or are analogous to cells bound to insulin. This approach was employed to create a well-defined structure within the nanospace cavities that make up functional monomers by cross-linking. The obtained MIPs exhibited a high adsorption capacity for the target insulin, which showed a significantly higher release of insulin in solution at pH 7.4 than at pH 1.2. In vivo studies on diabetic Wistar rats showed that the fast onset within 2 h is similar to subcutaneous injection with a maximum at 4 h, giving an engaged function responsible for the duration of glucose reduction for up to 24 h. These MIPs, prepared as nanosized material, may open a new horizon for oral insulin delivery

    Recognition Properties and Competitive Assays of a Dual Dopamine/Serotonin Selective Molecularly Imprinted Polymer

    Get PDF
    A molecularly imprinted polymer (MIP) with dual dopamine/serotonin-like binding sites (DS-MIP) was synthesized for use as a receptor model of study the drug-interaction of biological mixed receptors at a molecular level. The polymer material was produced using methacrylic acid (MAA) and acrylamide (ACM) as functional monomers, N,N′-methylene bisacrylamide (MBAA) as cross-linker, methanol/water mixture (4:1, v/v) as porogen and a mixture of dopamine (D) and serotonin (S) as templates. The prepared DS-MIP exhibited the greatest rebinding of the template(s) in aqueous methanol solution with decreased recognition in acetonitrile, water and methanol solvent. The binding affinity and binding capacity of DS-MIP with S were found to be higher than those of DS-MIP with D. The selectivity profiles of DS-MIP suggest that the D binding site of DS-MIP has sufficient integrity to discriminate between species of non-optimal functional group orientation, whilst the S binding site of DS-MIP is less selective toward species having structural features and functional group orientations different from S. The ligand binding activities of a series of ergot derivatives (ergocryptine, ergocornine, ergocristine, ergonovine, agroclavine, pergolide and terguride) have been studied with the DS-MIP using a competitive ligand binding assay protocol. The binding affinities of DS-MIP were demonstrated in the micro- or submicro-molar range for a series of ergot derivatives, whereas the binding affinities were considerably greater to natural receptors derived from the rat hypothalamus. The DS-MIP afforded the same pattern of differentiation as the natural receptors, i.e. affinity for the clavines > lysergic acid derivatives > ergopeptines. The results suggest that the discrimination for the ergot derivatives by the dopamine and serotonin sites of DS-MIP is due to the structural features and functional orientation of the phenylethylamine and indolylethylamine entities at the binding sites, and the fidelity of the dopamine and serotonin imprinted cavities

    Recognition Properties and Competitive Assays of a Dual Dopamine/Serotonin Selective Molecularly Imprinted Polymer

    No full text
    A molecularly imprinted polymer (MIP) with dual dopamine/serotonin-like binding sites (DS-MIP) was synthesized for use as a receptor model of study the druginteraction of biological mixed receptors at a molecular level. The polymer material was produced using methacrylic acid (MAA) and acrylamide (ACM) as functional monomers, N,N′-methylene bisacrylamide (MBAA) as cross-linker, methanol/water mixture (4:1, v/v) as porogen and a mixture of dopamine (D) and serotonin (S) as templates. The prepared DS-MIP exhibited the greatest rebinding of the template(s) in aqueous methanol solution with decreased recognition in acetonitrile, water and methanol solvent. The binding affinity and binding capacity of DS-MIP with S were found to be higher than those of DS-MIP with D. The selectivity profiles of DS-MIP suggest that the D binding site of DS-MIP has sufficient integrity to discriminate between species of non-optimal functional group orientation, whilst the S binding site of DS-MIP is less selective toward species having structural features and functional group orientations different from S. The ligand binding activities of a series of ergot derivatives (ergocryptine, ergocornine, ergocristine, ergonovine, agroclavine, pergolide and terguride) have been studied with the DS-MIP using a competitive ligand binding assay protocol. The binding affinities of DSMIP were demonstrated in the micro- or submicro-molar range for a series of ergot derivatives, whereas the binding affinities were considerably greater to natural receptors derived from the rat hypothalamus. The DS-MIP afforded the same pattern of differentiation as the natural receptors, i.e. affinity for the clavines > lysergic acid derivatives > ergopeptines. The results suggest that the discrimination for the ergot derivatives by the dopamine and serotonin sites of DS-MIP is due to the structural features and functional orientation of the phenylethylamine and indolylethylamine entities at the binding sites, and the fidelity of the dopamine and serotonin imprinted cavities

    Evaluation of stereoselective dissolution of salbutamol from the formulations with chiral excipients

    No full text

    Sensor Array Based on Molecularly Imprinted Polymers for Simultaneous Detection of Lipoproteins

    No full text
    Herein we report a sensor array based on quartz crystal microbalance (QCM) to simultaneously detect two biomarkers, namely low-density lipoprotein (LDL), and high-density lipoprotein (HDL). Selective recognition takes place through molecularly imprinted polymers (MIP) with both MIPs and corresponding non-imprinted polymer (NIP) as reference electrode. Sensor array performs highly appreciably in term of selectivity to LDL and HDL (defined through its cholesterol LDL-C, and HDL-C) when operated in 10 mM PBS. The sensor response time is less than 15 min. Furthermore, coefficients of variation indicating precision of our sensor array are at 2%–8%

    Low-Density Lipoprotein Sensor Based on Molecularly Imprinted Polymer

    No full text
    Increased level of low-density lipoprotein (LDL) strongly correlates with incidence of coronary heart disease. We synthesized novel molecularly imprinted polymers (MIP) as biomimetic specific receptors to establish rapid analysis of LDL levels. For that purpose the ratios of monomers acrylic acid (AA), methacrylic acid (MAA), and <i>N</i>-vinylpyrrolidone (VP), respectively, were screened on 10 MHz dual-electrode quartz crystal microbalances (QCM). Mixing MAA and VP in the ratio 3:2 (m/m) revealed linear sensor characteristic to LDL cholesterol (LDL-C) from 4 to 400 mg/dL or 0.10–10.34 mmol/L in 100 mM phosphate-buffered saline (PBS) without significant interference: high-density lipoprotein (HDL) yields 4–6% of the LDL signal, very-low-density-lipoprotein (VLDL) yields 1–3%, and human serum albumin (HSA) yields 0–2%. The LDL-MIP sensor reveals analytical accuracy of 95–96% at the 95% confidence interval with precision at 6–15%, respectively. Human serum diluted 1:2 with PBS buffer was analyzed by LDL-MIP sensors to demonstrate applicability to real-life samples. The sensor responses are excellently correlated to the results of the standard technique, namely, a homogeneous enzymatic assay (<i>R</i><sup>2</sup> = 0.97). This demonstrates that the system can be successfully applied to human serum samples for determining LDL concentrations

    High-density lipoprotein sensor based on molecularly imprinted polymer

    No full text
    Decreased blood level of high-density lipoprotein (HDL) is one of the essential criteria in diagnosing metabolic syndrome associated with the development of atherosclerosis and coronary heart disease. Herein, we report the synthesis of a molecularly imprinted polymer (MIP) that selectively binds HDL, namely, HDL-MIP, and thus serves as an artificial, biomimetic sensor layer. The optimized polymer contains methacrylic acid and N-vinylpyrrolidone in the ratio of 2:3, cross-linked with ethylene glycol dimethacrylate. On 10 MHz dual electrode quartz crystal microbalances (QCM), such HDL-MIP revealed dynamic detection range toward HDL standards in the clinically relevant ranges of 2–250 mg/dL HDL cholesterol (HDL-C) in 10 mM phosphate-buffered saline (PBS, pH = 7.4) without significant interference: low-density lipoprotein (LDL) yields 5% of the HDL signal, and both very-low-density lipoprotein (VLDL) and human serum albumin (HSA) yield 0%. The sensor reveals recovery rates between 94 and 104% at 95% confidence interval with precision of 2.3–7.7% and shows appreciable correlation (R 2 = 0.97) with enzymatic colorimetric assay, the standard in clinical tests. In contrast to the latter, it achieves rapid results (10 min) during one-step analysis without the need for sample preparation.© The Author(s
    corecore