64 research outputs found

    Stem Cell Fate Analysis Revisited: Interpretation of Individual Clone Dynamics in the Light of a New Paradigm of Stem Cell Organization

    Get PDF
    Many experimental findings on heterogeneity, flexibility, and plasticity of tissue stem cells are currently challenging stem cell concepts that assume a cell intrinsically predefined, unidirectional differentiation program. In contrast to these classical concepts, nonhierarchical self-organizing systems provide an elegant and comprehensive alternative to explain the experimental data. Here we present the application of such a self-organizing concept to quantitatively describe the hematopoietic stem cell system. Focusing on the analysis of individual-stem-cell fates and clonal dynamics, we particularly discuss implications of the theoretical results on the interpretation of experimental findings. We demonstrate that it is possible to understand hematopoietic stem cell organization without assumptions on unidirectional developmental hierarchies, preprogrammed asymmetric division events or other assumptions implying the existence of a predetermined stem cell entity. The proposed perspective, therefore, changes the general paradigm of thinking about stem cells

    Kooperative Lehr-/Lernkonzepte im Bereich - tutoriell begleitete, virtuelle, kollaborative Gruppenarbeit in multinationalen Lernergruppen

    Get PDF
    Netzbasierte interkulturelle Zusammenarbeit gewinnt in verschiedensten Bereichen mehr und mehr an Bedeutung und wird dementsprechend auch in der Lehre - speziell in E-Learning-Settings immer häufiger thematisiert. Neben den technischen und organisatorischen Herausforderungen gibt es eine ganze Reihe didaktischer Aspekte die es bei der Konzeption und der Durchführung derartiger Arrangements zu beachten gilt. (...

    Non-Redundant Sampling and Statistical Estimators for RNA Structural Properties at the Thermodynamic Equilibrium

    Get PDF
    The computation of statistical properties of RNA structure at the thermodynamic equilibrium, or Boltzmann ensemble of low free-energy, represents an essential step to understand and harness the selective pressure weighing on RNA evolution. However, classic methods for sampling representative conformations are frequently crippled by large levels of redundancy, which are uninformative and detrimental to downstream analyses. In this work, we adapt and implement, within the Vienna RNA package, an efficient non-redundant backtracking procedure to produce collections of unique secondary structures generated within a well-defined distribution. This procedure is coupled with a novel statistical estimator, which we prove is unbiased, consistent and has lower variance (better convergence) than the classic estimator. We demonstrate the efficiency of our coupled non-redundant sampler/estimator by revisiting several applications of sampling in RNA bioinformatics, and demonstrate its practical superiority over previous estimators. We conclude by discussing the choice of the number of samples required to produce reliable estimates

    Lipid Signaling via Pkh1/2 Regulates Fungal CO 2 Sensing through the Kinase Sch9.

    Get PDF
    Adaptation to alternating CO2 concentrations is crucial for all organisms. Carbonic anhydrases—metalloenzymes that have been found in all domains of life—enable fixation of scarce CO2 by accelerating its conversion to bicarbonate and ensure maintenance of cellular metabolism. In fungi and other eukaryotes, the carbonic anhydrase Nce103 has been shown to be essential for growth in air (~0.04% CO2). Expression of NCE103 is regulated in response to CO2 availability. In Saccharomyces cerevisiae, NCE103 is activated by the transcription factor ScCst6, and in Candida albicans and Candida glabrata, it is activated by its homologues CaRca1 and CgRca1, respectively. To identify the kinase controlling Cst6/Rca1, we screened an S. cerevisiae kinase/phosphatase mutant library for the ability to regulate NCE103 in a CO2-dependent manner. We identified ScSch9 as a potential ScCst6-specific kinase, as the sch9? mutant strain showed deregulated NCE103 expression on the RNA and protein levels. Immunoprecipitation revealed the binding capabilities of both proteins, and detection of ScCst6 phosphorylation by ScSch9 in vitro confirmed Sch9 as the Cst6 kinase. We could show that CO2-dependent activation of Sch9, which is part of a kinase cascade, is mediated by lipid/Pkh1/2 signaling but not TORC1. Finally, we tested conservation of the identified regulatory cascade in the pathogenic yeast species C. albicans and C. glabrata. Deletion of SCH9 homologues of both species impaired CO2-dependent regulation of NCE103 expression, which indicates a conservation of the CO2 adaptation mechanism among yeasts. Thus, Sch9 is a Cst6/Rca1 kinase that links CO2 adaptation to lipid signaling via Pkh1/2 in fungi

    ViennaRNA Package 2.0

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Secondary structure forms an important intermediate level of description of nucleic acids that encapsulates the dominating part of the folding energy, is often well conserved in evolution, and is routinely used as a basis to explain experimental findings. Based on carefully measured thermodynamic parameters, exact dynamic programming algorithms can be used to compute ground states, base pairing probabilities, as well as thermodynamic properties.</p> <p>Results</p> <p>The <monospace>ViennaRNA</monospace> Package has been a widely used compilation of RNA secondary structure related computer programs for nearly two decades. Major changes in the structure of the standard energy model, the <it>Turner 2004 </it>parameters, the pervasive use of multi-core CPUs, and an increasing number of algorithmic variants prompted a major technical overhaul of both the underlying <monospace>RNAlib</monospace> and the interactive user programs. New features include an expanded repertoire of tools to assess RNA-RNA interactions and restricted ensembles of structures, additional output information such as <it>centroid </it>structures and <it>maximum expected accuracy </it>structures derived from base pairing probabilities, or <it>z</it>-<it>scores </it>for locally stable secondary structures, and support for input in <monospace>fasta</monospace> format. Updates were implemented without compromising the computational efficiency of the core algorithms and ensuring compatibility with earlier versions.</p> <p>Conclusions</p> <p>The <monospace>ViennaRNA Package 2.0</monospace>, supporting concurrent computations <monospace>via OpenMP</monospace>, can be downloaded from <url>http://www.tbi.univie.ac.at/RNA</url>.</p

    Evolution of pathogenicity and sexual reproduction in eight Candida genomes

    Get PDF
    Candida species are the most common cause of opportunistic fungal infection worldwide. Here we report the genome sequences of six Candida species and compare these and related pathogens and non-pathogens. There are significant expansions of cell wall, secreted and transporter gene families in pathogenic species, suggesting adaptations associated with virulence. Large genomic tracts are homozygous in three diploid species, possibly resulting from recent recombination events. Surprisingly, key components of the mating and meiosis pathways are missing from several species. These include major differences at the mating-type loci (MTL); Lodderomyces elongisporus lacks MTL, and components of the a1/2 cell identity determinant were lost in other species, raising questions about how mating and cell types are controlled. Analysis of the CUG leucine-to-serine genetic-code change reveals that 99% of ancestral CUG codons were erased and new ones arose elsewhere. Lastly, we revise the Candida albicans gene catalogue, identifying many new genes.publishe

    World Congress Integrative Medicine & Health 2017: Part one

    Get PDF

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    No full text
    Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts

    RNA Secondary Structures with Limited Base Pair Span: Exact Backtracking and an Application

    No full text
    The accuracy of RNA secondary structure prediction decreases with the span of a base pair, i.e., the number of nucleotides that it encloses. The dynamic programming algorithms for RNA folding can be easily specialized in order to consider only base pairs with a limited span L, reducing the memory requirements to O(nL), and further to O(n) by interleaving backtracking. However, the latter is an approximation that precludes the retrieval of the globally optimal structure. So far, the ViennaRNA package therefore does not provide a tool for computing optimal, span-restricted minimum energy structure. Here, we report on an efficient backtracking algorithm that reconstructs the globally optimal structure from the locally optimal fragments that are produced by the interleaved backtracking implemented in RNALfold. An implementation is integrated into the ViennaRNA package. The forward and the backtracking recursions of RNALfold are both easily constrained to structural components with a sufficiently negative z-scores. This provides a convenient method in order to identify hyper-stable structural elements. A screen of the C. elegans genome shows that such features are more abundant in real genomic sequences when compared to a di-nucleotide shuffled background model
    corecore