19 research outputs found

    Identification and fine-mapping of quantitative trait loci for seed vigor in germination and seedling establishment in rice.

    No full text
    Seed vigor is an index of seed quality that is used to describe the rapid and uniform germination and the establishment of strong seedlings in any environmental conditions. Strong seed vigor in low-temperature germination conditions is particularly important in direct-sowing rice production systems. However, seed vigor has not been selected as an important breeding trait in traditional breeding programs due to its quantitative inherence. In this study, we identified and mapped eight quantitative trait loci (QTLs) for seed vigor by using a recombinant inbred population from a cross between rice (Oryza sativa L. ssp. indica) cultivars ZS97 and MH63. Conditional QTL analysis identified qSV-1, qSV-5b, qSV-6a, qSV-6b, and qSV-11 influenced seedling establishment and that qSV-5a, qSV-5c, and qSV-8 influenced only germination. Of these, qSV-1, qSV-5b, qSV-6a, qSV-6b, and qSV-8 were low-temperature-specific QTLs. Two major-effective QTLs, qSV-1, and qSV-5c were narrowed down to 1.13-Mbp and 400-kbp genomic regions, respectively. The results provide tightly linked DNA markers for the marker-assistant pyramiding of multiple positive alleles for increased seed vigor in both normal and low-temperature germination environments

    Metabolic profiles in community-acquired pneumonia: developing assessment tools for disease severity

    No full text
    Abstract Background This study aimed to determine whether community-acquired pneumonia (CAP) had a metabolic profile and whether this profile can be used for disease severity assessment. Methods A total of 175 individuals including 119 CAP patients and 56 controls were enrolled and divided into two cohorts. Serum samples from a discovery cohort (n = 102, including 38 non-severe CAP, 30 severe CAP, and 34 age and sex-matched controls) were determined by untargeted ultra-high-performance liquid chromatography with tandem mass spectrometry (LC-MS/MS)-based metabolomics. Selected differential metabolites between CAP patients versus controls, and between the severe CAP group versus non-severe CAP group, were confirmed by targeted mass spectrometry assays in a validation cohort (n = 73, including 32 non-severe CAP, 19 severe CAP and 22 controls). Pearson’s correlation analysis was performed to assess relationships between the identified metabolites and clinical severity of CAP. The area under the curve (AUC), sensitivity and specificity of the metabolites for predicting the severity of CAP were also investigated. Results The metabolic signature was markedly different between CAP patients and controls. Fifteen metabolites were found to be significantly dysregulated in CAP patients, which were mainly mapped to the metabolic pathways of sphingolipid, arginine, pyruvate and inositol phosphate. The alternation trends of five metabolites among the three groups including sphinganine, p-Cresol sulfate, dehydroepiandrosterone sulfate (DHEA-S), lactate and l-arginine in the validation cohort were consistent with those in the discovery cohort. Significantly lower concentrations of sphinganine, p-Cresol sulfate and DHEA-S were observed in CAP patients than in controls (p  65 years (CURB-65), pneumonia severity index (PSI) and Acute Physiology and Chronic Health Evaluation II (APACHE II) scores, while DHEA-S inversely correlated with the three scoring systems. Combining lactate, sphinganine and DHEA-S as a metabolite panel for discriminating severe CAP from non-severe CAP exhibited a better AUC of 0.911 (95% confidence interval 0.825–0.998) than CURB-65, PSI and APACHE II scores. Conclusions This study demonstrates that serum metabolomics approaches based on the LC-MS/MS platform can be applied as a tool to reveal metabolic changes during CAP and establish a metabolite signature related to disease severity. Trial registration ClinicalTrials.gov, NCT03093220. Registered retrospectively on 28 March 2017

    A Combination of Serological Assays to Detect Human Antibodies to the Avian Influenza A H7N9 Virus

    No full text
    <div><p>Human infection with avian influenza A H7N9 virus was first identified in March 2013 and represents an ongoing threat to public health. There is a need to optimize serological methods for this new influenza virus. Here, we compared the sensitivity and specificity of the hemagglutinin inhibition (HI), microneutralization (MN), and Western blot (WB) assays for the detection of human antibodies against avian influenza A (H7N9) virus. HI with horse erythrocytes (hRBCs) and a modified MN assay possessed greater sensitivity than turkey erythrocytes and the standard MN assay, respectively. Using these assays, 80% of tested sera from confirmed H7N9 cases developed detectable antibody to H7N9 after 21 days. To balance sensitivity and specificity, we found serum titers of ≥20 (MN) or 160 (HI) samples were most effective in determining seropositive to H7N9 virus. Single serum with HI titers of 20–80 or MN titer of 10 could be validated by each other or WB assay. Unlike serum collected from adult or elderly populations, the antibody response in children with mild disease was low or undetectable. These combinations of assays will be useful in case diagnosis and serologic investigation of human cases.</p></div

    Additional file 2: of Metabolic profiles in community-acquired pneumonia: developing assessment tools for disease severity

    No full text
    Supplemental Figures. Figure S1. Metabolite base peak chromatograms of serum samples from a patient in three groups: a non-severe CAP; b severe CAP; c controls. Figure S2. S-plots identifying putative biomarkers on the basis of OPLS-DA models: a CAP patients versus controls; b severe CAP versus non-severe CAP patients. Figure S3. Box–whisker plots of relative intensity of 15 metabolites changed in CAP patients compared to controls. Horizontal line represents median; bottom and top of the box represent 25th and the 75th percentiles; whiskers represent 5% and 95% percentiles. *FDR < 0.05, **FDR < 0.001. NSCAP non-severe CAP, SCAP severe CAP. (DOCX 7213 kb

    The information of test serum samples.

    No full text
    <p>Abbreviations: HI, hemagglutination inhibition assay; MN, microneutralization assay; WB, Western blot assay; GMT: geometric mean titers. WB*, eight serum samples were tested with the WB assay. WB**, one serum sample was used in the WB assay. Titers below 10 were considered negative and assigned a value of 5. 5 seasonal influenza viruses: H1N1, H3N2, H1N1 2009 pdm, B Victoria, B Yamagata.</p
    corecore