298 research outputs found

    Terahertz Sources, Detectors, and Transceivers in Silicon Technologies

    Get PDF
    With active devices lingering on the brink of activity and every passive device and interconnection on chip acting as potential radiator, a paradigm shift from “top-down” to “bottom-up” approach in silicon terahertz (THz) circuit design is clearly evident as we witness orders-of-magnitude improvements of silicon THz circuits in terms of output power, phase noise, and sensitivity since their inception around 2010. That is, the once clear boundary between devices, circuits, and function blocks is getting blurrier as we push the devices toward their limits. And when all else fails to meet the system requirements, which is often the case, a logical step forward is to scale these THz circuits to arrays. This makes a lot of sense in the terahertz region considering the relatively efficient on-chip THz antennas and the reduced size of arrays with half-wavelength pitch. This chapter begins with the derivation of conditions for maximizing power gain of active devices. Discussions of circuit topologies for THz sources, detectors, and transceivers with emphasis on their efficacy and scalability ensue, and this chapter concludes with a brief survey of interface options for channeling THz energy out of the chip

    Evaluating Open-Domain Dialogues in Latent Space with Next Sentence Prediction and Mutual Information

    Full text link
    The long-standing one-to-many issue of the open-domain dialogues poses significant challenges for automatic evaluation methods, i.e., there may be multiple suitable responses which differ in semantics for a given conversational context. To tackle this challenge, we propose a novel learning-based automatic evaluation metric (CMN), which can robustly evaluate open-domain dialogues by augmenting Conditional Variational Autoencoders (CVAEs) with a Next Sentence Prediction (NSP) objective and employing Mutual Information (MI) to model the semantic similarity of text in the latent space. Experimental results on two open-domain dialogue datasets demonstrate the superiority of our method compared with a wide range of baselines, especially in handling responses which are distant to the golden reference responses in semantics.Comment: Accepted at ACL202

    Experimental Research on Compression Properties of Cement Asphalt Mortar due to Drying and Wetting Cycle

    Get PDF
    Uniaxial compression test of cement asphalt (CA) mortar specimens, due to drying and wetting cycle of 0, 2, 4 and 8 times, is carried out by using the electronic universal test machine, with the strain rate ranging from 1 × 10−5 s−1 to 1 × 10−2 s−1. The effects of strain rate and drying and wetting cycle time on the compressive strength, elasticity modulus, and stress-strain full curve are investigated. Experimental results show that the strain-stress full curve of CA mortar is affected obviously by strain rate and drying and wetting cycle time. The compressive strength and elasticity modulus increase with the strain rate under the same drying and wetting cycle time. The compressive strength and elasticity modulus decrease with the increase of drying and wetting cycle time in the same strain rate. The lower the strain rate is, the greater the compressive strength and elasticity modulus of CA mortar decrease. When the strain rate is 1 × 10−5 s−1 and drying and wetting cycle time is 8, the largest reduction of average compressive strength of CA mortar is 40.48%, and the largest reduction of elasticity modulus of CA mortar is 35.51%, and the influence of drying and wetting cycle on the compressive strength of CA mortar is greater than its influence on the elasticity modulus

    Construction and Synergistic Effect of Recombinant Yeast Co-expressing Pig IL-2/4/6 on Immunity of Piglets to PRRS Vaccination

    Get PDF
    AbstractIn order to develop cost-effective immunomodulator, the recombinant Pichia pastoris were firstly constructed to co-express porcine IL-2/4/6 genes, and then fermented to feed 45-days Tibetan piglets at different doses to evaluate its effects on immunity of piglets to PRRS vaccination, which simultaneously received intramuscular injection of inactivated PRRS vaccine. The results were found that the leukocytes, IgG and specific antibody to PRRSV, Th and Tc cells increased significantly in the blood of treated piglets in comparison with those of the control (P<0.05); the mRNA expression of TLRs (TLR-2, 3, 4, 7, 9), IFN-γ, IL-2, IL-4, IL-6, IL-7, IL-12 and IL-15 genes were elevated significantly in the immune cells from the blood of treated piglets (P<0.05). Moreover, the growth of the treated piglets also markedly improved whose average net weight gain was significantly higher than the control on 58 days post inoculation (P<0.05). These results suggest that the recombinant yeast can effectively enhance the systematic innate and adaptive immunity of piglets as well as promote the growth of piglet, which could be further developed as cost-effective promising immunomodulator to improve the control of pig PRRS disease

    Robust 3.7 V-Na2/3_{2/3}[Cu1/3_{1/3}Mn2/3_{2/3}]O2_2 Cathode for Na-ion Batteries

    Full text link
    Na-ion batteries (NIBs), which are recognized as a next-generation alternative technology for energy storage, still suffer from commercialization constraints due to the lack of low-cost, high-performance cathode materials. Since our first discovery of Cu3+^{3+}/Cu2+^{2+} electrochemistry in 2014, numerous Cu-substituted/doped materials have been designed for NIBs. However for almost ten years, the potential of Cu3+^{3+}/Cu2+^{2+} electrochemistry has been grossly underappreciated and normally regarded as a semielectrochemically active redox. Here, we re-synthesized P2-Na2/3_{2/3}[Cu1/3_{1/3}Mn2/3_{2/3}]O2_2 and reinterpreted it as a high-voltage, cost-efficient, air-stable, long-life, and high-rate cathode material for NIBs, which demonstrates a high operating voltage of 3.7 V and a completely active Cu3+^{3+}/Cu2+^{2+} redox reaction. The 2.3 Ah cylindrical cells exhibit excellent cycling (93.1% capacity after 2000 cycles), high rate (97.2% capacity at 10C rate), good low-temperature performance (86.6% capacity at -30^\circC), and high safety, based on which, a 56 V-11.5 Ah battery pack for E-bikes is successfully constructed, exhibiting stable cycling (96.5% capacity at the 800th cycle) and a long driving distance (36 km, tester weight 65 kg). This work offers a commercially feasible cathode material for low-cost, high-voltage NIBs, paving the way for advanced NIBs in power and stationary energy storage applications.Comment: 15 pages, 3 figures, 1 tabl

    On-chip black hole: Hawking radiation and curved spacetime in a superconducting quantum circuit with tunable couplers

    Full text link
    Hawking radiation is one of quantum features of a black hole, which can be understood as a quantum tunneling across the event horizon of the black hole, but it is quite difficult to directly observe the Hawking radiation of an astrophysical black hole. Remarkable experiments of analogue black holes on various platforms have been performed. However, Hawking radiation and its quantum nature such as entanglement have not been well tested due to the experimental challenges in accurately constructing curved spacetime and precisely measuring the thermal spectrum. Based on the recent architecture breakthrough of tunable couplers for superconducting processor, we realize experimentally an analogue black hole using our new developed chip with a chain of 10 superconducting transmon qubits with interactions mediated by 9 transmon-type tunable couplers. By developing efficient techniques to engineer the couplings between qubits via tuning couplers, we realize both the flat and curved spacetime backgrounds. The quantum walks of quasi-particle in the curved spacetime reflect the gravitational effect around the black hole, resulting in the behavior of Hawking radiation. By virtue of the state tomography measurement of all 7 qubits outside the analogue event horizon, we show that Hawking radiation can be verified. In addition, an entangled pair is prepared inside the horizon and the dynamics of entanglement in the curved spacetime is directly measured. Our results would stimulate more interests to explore information paradox, entropy and other related features of black holes using programmable superconducting processor with tunable couplers.Comment: modified manuscripts, 7 pages, 4 figures (main text) + 12 pages (supplementary information

    Genome-wide identification and functional exploration of the legume lectin genes in Brassica napus and their roles in Sclerotinia disease resistance

    Get PDF
    As one of the largest classes of lectins, legume lectins have a variety of desirable features such as antibacterial and insecticidal activities as well as anti-abiotic stress ability. The Sclerotinia disease (SD) caused by the soil-borne fungus Sclerotinia sclerotiorum is a devastating disease affecting most oil crops such as Brassica napus. Here, we identified 130 legume lectin (LegLu) genes in B. napus, which could be phylogenetically classified into seven clusters. The BnLegLu gene family has been significantly expanded since the whole-genome duplication (WGD) or segmental duplication. Gene structure and conserved motif analysis suggested that the BnLegLu genes were well conserved in each cluster. Moreover, relative to those genes only containing the legume lectin domain in cluster VI–VII, the genes in cluster I–V harbored a transmembrane domain and a kinase domain linked to the legume lectin domain in the C terminus. The expression of most BnLegLu genes was relatively low in various tissues. Thirty-five BnLegLu genes were responsive to abiotic stress, and 40 BnLegLu genes were strongly induced by S. sclerotiorum, with a most significant up-regulation of 715-fold, indicating their functional roles in SD resistance. Four BnLegLu genes were located in the candidate regions of genome-wide association analysis (GWAS) results which resulted from a worldwide rapeseed population consisting of 324 accessions associated with SD. Among them, the positive role of BnLegLus-16 in SD resistance was validated by transient expression in tobacco leaves. This study provides important information on BnLegLu genes, particularly about their roles in SD resistance, which may help targeted functional research and genetic improvement in the breeding of B. napus

    Evaluating China's fossil-fuel CO2 emissions from a comprehensive dataset of nine inventories

    Get PDF
    China s fossil-fuel CO2 (FFCO2) emissions accounted for approximately 28% of the global total FFCO2 in 2016. An accurate estimate of China s FFCO2 emissions is a prerequisite for global and regional carbon budget analyses and the monitoring of carbon emission reduction efforts. However, significant uncertainties and discrepancies exist in estimations of China s FFCO2 emissions due to a lack of detailed traceable emission factors (EFs) and multiple statistical data sources. Here, we evaluated China s FFCO2 emissions from nine published global and regional emission datasets. These datasets show that the total emissions increased from 3.4 (3.0 3.7) in 2000 to 9.8 (9.2 10.4) Gt CO2 yr-1 in 2016. The variations in these estimates were largely due to the different EF (0.491 0.746 t C per t of coal) and activity data. The large-scale patterns of gridded emissions showed a reasonable agreement, with high emissions being concentrated in major city clusters, and the standard deviation mostly ranged from 10% to 40% at the provincial level. However, patterns beyond the provincial scale varied significantly, with the top 5% of the grid level accounting for 50 % 90% of total emissions in these datasets. Our findings highlight the significance of using locally measured EF for Chinese coal. To reduce uncertainty, we recommend using physical CO2 measurements and use these values for dataset validation, key input data sharing (e.g., point sources), and finer-resolution validations at various levels
    corecore