9 research outputs found

    The Role and Need for Space-Based Forest Biomass-Related Measurements in Environmental Management and Policy

    Get PDF
    The achievement of international goals and national commitments related to forest conservation and management, climate change, and sustainable development requires credible, accurate, and reliable monitoring of stocks and changes in forest biomass and carbon. Most prominently, the Paris Agreement on Climate Change and the United Nations’ Sustainable Development Goals in particular require data on biomass to monitor progress. Unprecedented opportunities to provide forest biomass data are created by a series of upcoming space-based missions, many of which provide open data targeted at large areas and better spatial resolution biomass monitoring than has previously been achieved. We assess various policy needs for biomass data and recommend a long-term collaborative effort among forest biomass data producers and users to meet these needs. A gap remains, however, between what can be achieved in the research domain and what is required to support policy making and meet reporting requirements. There is no single biomass dataset that serves all users in terms of definition and type of biomass measurement, geographic area, and uncertainty requirements, and whether there is need for the most recent up-to-date biomass estimate or a long-term biomass trend. The research and user communities should embrace the potential strength of the multitude of upcoming missions in combination to provide for these varying needs and to ensure continuity for long-term data provision which one-off research missions cannot provide. International coordination bodies such as Global Forest Observations Initiative (GFOI), Committee on Earth Observation Satellites (CEOS), and Global Observation of Forest Cover and Land Dynamics (GOFC‐GOLD) will be integral in addressing these issues in a way that fulfils these needs in a timely fashion. Further coordination work should particularly look into how space-based data can be better linked with field reference data sources such as forest plot networks, and there is also a need to ensure that reference data cover a range of forest types, management regimes, and disturbance regimes worldwide

    Mapping Vegetation Density in a Heterogeneous River Floodplain Ecosystem Using Pointable CHRIS/PROBA Data

    No full text
    River floodplains in the Netherlands serve as water storage areas, while they also have the function of nature rehabilitation areas. Floodplain vegetation is therefore subject to natural processes of vegetation succession. At the same time, vegetation encroachment obstructs the water flow into the floodplains and increases the flood risk for the hinterland. Spaceborne pointable imaging spectroscopy has the potential to quantify vegetation density on the basis of leaf area index (LAI) from a desired view zenith angle. In this respect, hyperspectral pointable CHRIS data were linked to the ray tracing canopy reflectance model FLIGHT to retrieve vegetation density estimates over a heterogeneous river floodplain. FLIGHT enables simulating top-of-canopy reflectance of vegetated surfaces either in turbid (e.g., grasslands) or in 3D (e.g., forests) mode. By inverting FLIGHT against CHRIS data, LAI was computed for three main classified vegetation types, ‘herbaceous’, ‘shrubs’ and ‘forest’, and for the CHRIS view zenith angles in nadir, backward (−36°) and forward (+36°) scatter direction. The −36° direction showed most LAI variability within the vegetation types and was best validated, closely followed by the nadir direction. The +36° direction led to poorest LAI retrievals. The class-based inversion process has been implemented into a GUI toolbox which would enable the river manager to generate LAI maps in a semiautomatic way

    Forest restoration: Getting serious about the ‘plus’ in REDD+

    No full text

    Land Restoration in Latin America and the Caribbean: An Overview of Recent, Ongoing and Planned Restoration Initiatives and Their Potential for Climate Change Mitigation

    No full text
    Land degradation is a globally recognized problem and restoration of degraded land is currently high on the international agenda. Forest landscape restoration and other restorative ecosystem management activities are important measures that contribute towards reaching the objectives of the Bonn Challenge, which aims to restore 350 million hectares by 2030. In this context, many restoration projects are being planned and implemented in Latin America and the Caribbean (LAC). We present an overview of the location, goals and activities, and an estimated climate change mitigation potential of 154 recent, ongoing and planned restoration projects in LAC. Our analysis suggests that most projects are located in the humid tropics and less attention is paid to drylands. Increasing vegetation cover, biodiversity recovery and recovery of ecological processes are the most common goals. Restorative activities to fulfil these goals were diverse and were related to the type and source of funding that projects receive. For example, projects implemented through the Forest Investment Program (FIP) and the Global Environment Facility (GEF) generally rely on natural or assisted regeneration over large areas (>20,000 ha), whereas Clean Development Mechanism (CDM) projects establish forest plantations, often including exotic monocultures, in smaller project areas (<5000 ha). Projects that are specifically implemented within the scope of Initiative 20 × 20 and other local initiatives that target the local environmental problems, are more varied and rely on a wider portfolio of restorative activities, such as erosion control, exclusion of grazing and mixed plantations. These projects are usually implemented in smaller project areas (<5000 ha). All projects had the potential to contribute to climate change mitigation by storing additional forest aboveground biomass through natural regeneration, assisted regeneration or establishing a plantation. Further analysis of the implemented activities is an important next step to investigate their effectiveness in terms of goals achieved under Initiative 20 × 20 and the Bonn Challenge. This would provide information for future restoration projects and upscaling of restorative activities in a wider area
    corecore