1,952 research outputs found
Antibacterial activity of crude extracts from Mexican plants against methicillin-resistant Staphylococcus
The aim of this study was to evaluate the antimicrobial activity of 36 extracts from 18 vegetal species used as soap, insecticides, insect repellent and for the treatment of several diseases likely associated to microorganisms. The vegetal species were collected in Oaxaca, Puebla and Veracruz States, México. The extracts were evaluated against isolates of nosocomial infections of Staphylococcus aureus and Staphylococcus coagulase negative resistant to Methicillin by a modificated agar diffusion method. The results demonstrate an important antibacterial effect in vitro, against all of the strains of Staphylococcus tested mainly with those from Vernonanthura oaxacana, Trixis silvatica, and with those of Perezia hebeclada. The minimum inhibitory concentration for V. oaxacana and P. hebeclada was 250 μg/disc and for T. silvatica it was 15 μg/disc. These extracts showed an important potential that would contribute to the development of new agents against infections by Staphylococcus.Key words: Crude extracts, antimicrobial activity, intrahospitalary infections, methicillin-resistant Staphylococcus coagulase negative
The neonicotinoid insecticide Imidacloprid repels pollinating flies and beetles at field-realistic concentrations
Neonicotinoids are widely used systemic insecticides which, when applied to flowering crops, are translocated to the nectar and pollen where they may impact upon pollinators. Given global concerns over pollinator declines, this potential impact has recently received much attention. Field exposure of pollinators to neonicotinoids depends on the concentrations present in flowering crops and the degree to which pollinators choose to feed upon them. Here we describe a simple experiment using paired yellow pan traps with or without insecticide to assess whether the commonly used neonicotinoid imidacloprid repels or attracts flying insects. Both Diptera and Coleoptera exhibited marked avoidance of traps containing imidacloprid at a field-realistic dose of 1 μg L-1, with Diptera avoiding concentrations as low as 0.01 μg L-1. This is to our knowledge the first evidence for any biological activity at such low concentrations, which are below the limits of laboratory detection using most commonly available techniques. Catch of spiders in pan traps was also slightly reduced by the highest concentrations of imidacloprid used (1 μg L-1), but catch was increased by lower concentrations. It remains to be seen if the repellent effect on insects occurs when neonicotinoids are present in real flowers, but if so then this could have implications for exposure of pollinators to neonicotinoids and for crop pollination. © 2013 Easton, Goulson
Application and Validation of PFGE for Serovar Identification of Leptospira Clinical Isolates
Serovar identification of clinical isolates of Leptospira is generally not performed on a routine basis, yet the identity of an infecting serovar is valuable from both epidemiologic and public health standpoints. Only a small number of reference laboratories worldwide have the capability to perform the cross agglutinin absorption test (CAAT), the reference method for serovar identification. Pulsed-field gel electrophoresis (PFGE) is an alternative method to CAAT that facilitates rapid identification of leptospires to the serovar level. We employed PFGE to evaluate 175 isolates obtained from humans and animals submitted to the Centers for Disease Control and Prevention (CDC) between 1993 and 2007. PFGE patterns for each isolate were generated using the NotI restriction enzyme and compared to a reference database consisting of more than 200 reference strains. Of the 175 clinical isolates evaluated, 136 (78%) were identified to the serovar level by the database, and an additional 27 isolates (15%) have been identified as probable new serovars. The remaining isolates yet to be identified are either not represented in the database or require further study to determine whether or not they also represent new serovars. PFGE proved to be a useful tool for serovar identification of clinical isolates of known serovars from different geographic regions and a variety of different hosts and for recognizing potential new serovars
A survey on knowledge and self-reported formula handling practices of parents and child care workers in Palermo, Italy
Powdered infant formula (PIF) is not a sterile product, but this information appears to be poorly diffused among child caregivers. Parents and child care workers may behave in an unsafe manner when handling PIF. Methods: This study involved parents and child care workers in the 24 municipal child care centres of Palermo. Knowledge and self-reported practices about PIF handling were investigated by a structured questionnaire. A Likert scale was used to measure the strength of the respondent's feelings. Association of knowledge and self-reported practices with demographic variables was also evaluated. Results: 42.4% of parents and 71.0% of child care workers filled in the questionnaire. Significant differences were found between parents and child care workers for age and education. 73.2% of parents and 84.4% of child care workers were confident in sterility of PIF. Generally, adherence to safe procedures when reconstituting and handling PIF was more frequently reported by child care workers who, according to the existing legislation, are regularly subjected to a periodic training on food safety principles and practices. Age and education significantly influenced the answers to the questionnaire of both parents and child care workers. Conclusion: The results of the study reveal that parents and child care workers are generally unaware that powdered formulas may contain viable microorganisms. However, child care workers consistently chose safer options than parents when answering the questions about adherence to hygienic practices. At present it seems unfeasible to produce sterile PIF, but the risk of growth of hazardous organisms in formula at the time of administration should be minimized by promoting safer behaviours among caregivers to infants in both institutional settings and home. \ua9 2009 Calamusa et al; licensee BioMed Central Ltd
Starch-gelatin antimicrobial packaging materials to extend the shelf life of chicken breast fillets
[EN] Antimicrobial starch:gelatin (1:1) films containing N-¿-lauroyl-l-arginine ethyl ester monohydrochloride (LAE) (10 % wt.) were used as food contact active layers in chicken breast fillets vacuum-packaged in polyamide/polyethylene pouches. Active layers were thermoprocessed (TP) or cast (OC) on the plastic film. Oxidized starch was used in OC coatings. Packaged chicken breast samples were stored at 4¿°C and their physicochemical properties (pH, colour and lipid oxidation) and microbial quality were analysed throughout storage. Both TP and OC films significantly (p¿<¿0.05) extended the shelf life of chicken breast fillets compared to control samples. The starch oxidation reaction in OC films promoted the formation of Maillard reaction compounds in the starch-gelatine blends, which enhanced the antimicrobial effectiveness of the OC films, but also promoted oxidative processes. This greatly affected the pH and colour parameters in OC packaged samples. Therefore, TP blend films containing LAE are recommended since they effectively extended the shelf life of chicken breast fillets without affecting the meat oxidation.The authors acknowledge the financial support provided by Ministerio de Economia y Competividad (Projects AGL2016-76699-R and AGL2013-42989-R). Olga Moreno Marro also thanks the Ministerio de Educacion, Cultura y Deporte for the FPU 2012-1121 grant.Moreno Marro, O.; Atarés Huerta, LM.; Chiralt, A.; Cruz-Romero, MC.; Kerry, J. (2018). Starch-gelatin antimicrobial packaging materials to extend the shelf life of chicken breast fillets. LWT - Food Science and Technology. 97:483-490. https://doi.org/10.1016/j.lwt.2018.07.005S4834909
Cyclical changes in seroprevalence of leptospirosis in California sea lions: endemic and epidemic disease in one host species?
BackgroundLeptospirosis is a zoonotic disease infecting a broad range of mammalian hosts, and is re-emerging globally. California sea lions (Zalophus californianus) have experienced recurrent outbreaks of leptospirosis since 1970, but it is unknown whether the pathogen persists in the sea lion population or is introduced repeatedly from external reservoirs.MethodsWe analyzed serum samples collected over an 11-year period from 1344 California sea lions that stranded alive on the California coast, using the microscopic agglutination test (MAT) for antibodies to Leptospira interrogans serovar Pomona. We evaluated seroprevalence among yearlings as a measure of incidence in the population, and characterized antibody persistence times based on temporal changes in the distribution of titer scores. We conducted multinomial logistic regression to determine individual risk factors for seropositivity with high and low titers.ResultsThe serosurvey revealed cyclical patterns in seroprevalence to L. interrogans serovar Pomona, with 4-5 year periodicity and peak seroprevalence above 50%. Seroprevalence in yearling sea lions was an accurate index of exposure among all age classses, and indicated on-going exposure to leptospires in non-outbreak years. Analysis of titer decay rates showed that some individuals probably maintain high titers for more than a year following exposure.ConclusionThis study presents results of an unprecedented long-term serosurveillance program in marine mammals. Our results suggest that leptospirosis is endemic in California sea lions, but also causes periodic epidemics of acute disease. The findings call into question the classical dichotomy between maintenance hosts of leptospirosis, which experience chronic but largely asymptomatic infections, and accidental hosts, which suffer acute illness or death as a result of disease spillover from reservoir species
Deep diversification of an AAV capsid protein by machine learning.
Modern experimental technologies can assay large numbers of biological sequences, but engineered protein libraries rarely exceed the sequence diversity of natural protein families. Machine learning (ML) models trained directly on experimental data without biophysical modeling provide one route to accessing the full potential diversity of engineered proteins. Here we apply deep learning to design highly diverse adeno-associated virus 2 (AAV2) capsid protein variants that remain viable for packaging of a DNA payload. Focusing on a 28-amino acid segment, we generated 201,426 variants of the AAV2 wild-type (WT) sequence yielding 110,689 viable engineered capsids, 57,348 of which surpass the average diversity of natural AAV serotype sequences, with 12-29 mutations across this region. Even when trained on limited data, deep neural network models accurately predict capsid viability across diverse variants. This approach unlocks vast areas of functional but previously unreachable sequence space, with many potential applications for the generation of improved viral vectors and protein therapeutics
Genome of the Avirulent Human-Infective Trypanosome—Trypanosoma rangeli
Background: Trypanosoma rangeli is a hemoflagellate protozoan parasite infecting humans and other wild and domestic mammals across Central and South America. It does not cause human disease, but it can be mistaken for the etiologic agent of Chagas disease, Trypanosoma cruzi. We have sequenced the T. rangeli genome to provide new tools for elucidating the distinct and intriguing biology of this species and the key pathways related to interaction with its arthropod and mammalian hosts. Methodology/Principal Findings: The T. rangeli haploid genome is ,24 Mb in length, and is the smallest and least repetitive trypanosomatid genome sequenced thus far. This parasite genome has shorter subtelomeric sequences compared to those of T. cruzi and T. brucei; displays intraspecific karyotype variability and lacks minichromosomes. Of the predicted 7,613 protein coding sequences, functional annotations could be determined for 2,415, while 5,043 are hypothetical proteins, some with evidence of protein expression. 7,101 genes (93%) are shared with other trypanosomatids that infect humans. An ortholog of the dcl2 gene involved in the T. brucei RNAi pathway was found in T. rangeli, but the RNAi machinery is non-functional since the other genes in this pathway are pseudogenized. T. rangeli is highly susceptible to oxidative stress, a phenotype that may be explained by a smaller number of anti-oxidant defense enzymes and heatshock proteins. Conclusions/Significance: Phylogenetic comparison of nuclear and mitochondrial genes indicates that T. rangeli and T. cruzi are equidistant from T. brucei. In addition to revealing new aspects of trypanosome co-evolution within the vertebrate and invertebrate hosts, comparative genomic analysis with pathogenic trypanosomatids provides valuable new information that can be further explored with the aim of developing better diagnostic tools and/or therapeutic targets
- …