177 research outputs found

    Stimulation of poliovirus RNA synthesis and virus maturation in a HeLa cell-free in vitro translation-RNA replication system by viral protein 3CD(pro)

    Get PDF
    Poliovirus protein 3CD(pro )possesses both proteinase and RNA binding activities, which are located in the 3C(pro )domain of the protein. The RNA polymerase (3D(pol)) domain of 3CD(pro )modulates these activities of the protein. We have recently shown that the level of 3CD(pro )in HeLa cell-free in vitro translation-RNA replication reactions is suboptimal for efficient virus production. However, the addition of either 3CD(pro )mRNA or of purified 3CD(pro )protein to in vitro reactions, programmed with viral RNA, results in a 100-fold increase in virus yield. Mutational analyses of 3CD(pro )indicated that RNA binding by the 3C(pro )domain and the integrity of interface I in the 3D(pol )domain of the protein are both required for function. The aim of these studies was to determine the exact step or steps at which 3CD(pro )enhances virus yield and to determine the mechanism by which this occurs. Our results suggest that the addition of extra 3CD(pro )to in vitro translation RNA-replication reactions results in a mild enhancement of both minus and plus strand RNA synthesis. By examining the viral particles formed in the in vitro reactions on sucrose gradients we determined that 3CD(pro )has only a slight stimulating effect on the synthesis of capsid precursors but it strikingly enhances the maturation of virus particles. Both the stimulation of RNA synthesis and the maturation of the virus particles are dependent on the presence of an intact RNA binding site within the 3C(pro )domain of 3CD(pro). In addition, the integrity of interface I in the 3D(pol )domain of 3CD(pro )is required for efficient production of mature virus. Surprisingly, plus strand RNA synthesis and virus production in in vitro reactions, programmed with full-length transcript RNA, are not enhanced by the addition of extra 3CD(pro). Our results indicate that the stimulation of RNA synthesis and virus maturation by 3CD(pro )in vitro is dependent on the presence of a VPg-linked RNA template

    Diffuse pseudoangiomatous stromal hyperplasia of the breast: a case report and a review of the radiological characteristics

    Get PDF
    Pseudoangiomatous stromal hyperplasia is a benign mesenchymal tumor of the breast. It is a rare condition and until a few years mainly described in pathological and surgical literature. Here, we provide a case report of PASH and an overview of its radiological features

    Mutually opposing activity of PIN7 splicing isoforms is required for auxin-mediated tropic responses in Arabidopsis thaliana

    Get PDF
    Summary Advanced transcriptome sequencing has uncovered that the majority of eukaryotic genes undergo alternative splicing (AS). Nonetheless, little effort has been dedicated to investigating the functional relevance of particular splicing events, even those in the key developmental and hormonal regulators. Combining approaches of genetics, biochemistry and advanced confocal microscopy, we describe the impact of alternative splicing on the PIN7 gene in the plant model Arabidopsis thaliana. PIN7 encodes a polarly localized transporter for the phytohormone auxin and produces two evolutionary-conserved transcripts PIN7a and PIN7b. PIN7a and PIN7b, differing in a 4-amino acid motif, exhibit almost identical expression pattern and subcellular localization. We reveal that they closely associate and mutually influence their mobility within the plasma membrane. Phenotypic complementation tests indicate that the functional contribution of PIN7b per se is minor, but it markedly reduces the prominent PIN7a activity, which is required for correct seedling apical hook formation and auxin-mediated tropic responses. Our results establish alternative splicing of the PIN family as a conserved, functionally relevant mechanism, unveiling an additional regulatory level of auxin-mediated plant development.Advanced transcriptome sequencing has revealed that the majority of eukaryotic genes undergo alternative splicing (AS). Nonetheless, little effort has been dedicated to investigating the functional relevance of particular splicing events, even those in the key developmental and hormonal regulators. Combining approaches of genetics, biochemistry and advanced confocal microscopy, we describe the impact of alternative splicing on the PIN7 gene in the model plant Arabidopsis thaliana. PIN7 encodes a polarly localized transporter for the phytohormone auxin and produces two evolutionarily conserved transcripts, PIN7a and PIN7b. PIN7a and PIN7b, differing in a four amino acid stretch, exhibit almost identical expression patterns and subcellular localization. We reveal that they are closely associated and mutually influence each other's mobility within the plasma membrane. Phenotypic complementation tests indicate that the functional contribution of PIN7b per se is minor, but it markedly reduces the prominent PIN7a activity, which is required for correct seedling apical hook formation and auxin-mediated tropic responses. Our results establish alternative splicing of the PIN family as a conserved, functionally relevant mechanism, revealing an additional regulatory level of auxin-mediated plant development.Peer reviewe

    Selective PDE4 subtype inhibition provides new opportunities to intervene in neuroinflammatory versus myelin damaging hallmarks of multiple sclerosis

    Get PDF
    Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS) characterized by focal inflammatory lesions and prominent demyelination. Even though the currently available therapies are effective in treating the initial stages of disease, they are unable to halt or reverse disease progression into the chronic progressive stage. Thus far, no repair-inducing treatments are available for progressive MS patients. Hence, there is an urgent need for the development of new therapeutic strategies either targeting the destructive immunological demyelination or boosting endogenous repair mechanisms. Using in vitro, ex vivo, and in vivo models, we demonstrate that selective inhibition of phosphodiesterase 4 (PDE4), a family of enzymes that hydrolyzes and inactivates cyclic adenosine monophosphate (cAMP), reduces inflammation and promotes myelin repair. More specifically, we segregated the myelination-promoting and anti-inflammatory effects into a PDE4D- and PDE4B-dependent process respectively. We show that inhibition of PDE4D boosts oligodendrocyte progenitor cells (OPC) differentiation and enhances (re)myelination of both murine OPCs and human iPSC-derived OPCs. In addition, PDE4D inhibition promotes in vivo remyelination in the cuprizone model, which is accompanied by improved spatial memory and reduced visual evoked potential latency times. We further identified that PDE4B-specific inhibition exerts anti-inflammatory effects since it lowers in vitro monocytic nitric oxide (NO) production and improves in vivo neurological scores during the early phase of experimental autoimmune encephalomyelitis (EAE). In contrast to the pan PDE4 inhibitor roflumilast, the therapeutic dose of both the PDE4B-specific inhibitor A33 and the PDE4D-specific inhibitor Gebr32a did not trigger emesis-like side effects in rodents. Finally, we report distinct PDE4D isoform expression patterns in human area postrema neurons and human oligodendroglia lineage cells. Using the CRISPR-Cas9 system, we confirmed that pde4d1/2 and pde4d6 are the key targets to induce OPC differentiation. Collectively, these data demonstrate that gene specific PDE4 inhibitors have potential as novel therapeutic agents for targeting the distinct disease processes of MS

    Plant-made polio type 3 stabilized VLPs—a candidate synthetic polio vaccine

    Get PDF
    Poliovirus (PV) is the causative agent of poliomyelitis, a crippling human disease known since antiquity. PV occurs in two distinct antigenic forms, D and C, of which only the D form elicits a robust neutralizing response. Developing a synthetically produced stabilized viruslike particle (sVLP)-based vaccine with D antigenicity, without the drawbacks of current vaccines, will be a major step towards the final eradication of poliovirus. Such a sVLP would retain the native antigenic conformation and the repetitive structure of the original virus particle, but lack infectious genomic material. In this study, we report the production of synthetically stabilized PV VLPs in plants. Mice carrying the gene for the human PV receptor are protected from wild-type PV when immunized with the plant-made PV sVLPs. Structural analysis of the stabilized mutant at 3.6 Ă… resolution by cryo-electron microscopy and single particle reconstruction reveals a structure almost indistinguishable from wild-type PV3

    Evaluation of sesamum gum as an excipient in matrix tablets

    Get PDF
    In developing countries modern medicines are often beyond the affordability of the majority of the population. This is due to the reliance on expensive imported raw materials despite the abundance of natural resources which could provide an equivalent or even an improved function. The aim of this study was to investigate the potential of sesamum gum (SG) extracted from the leaves of Sesamum radiatum (readily cultivated in sub-Saharan Africa) as a matrix former. Directly compressed matrix tablets were prepared from the extract and compared with similar matrices of HPMC (K4M) using theophylline as a model water soluble drug. The compaction, swelling, erosion and drug release from the matrices were studied in deionized water, 0.1 N HCl (pH 1.2) and phosphate buffer (pH 6.8) using USP apparatus II. The data from the swelling, erosion and drug release studies were also fitted into the respective mathematical models. Results showed that the matrices underwent a combination of swelling and erosion, with the swelling action being controlled by the rate of hydration in the medium. SG also controlled the release of theophylline similar to the HPMC and therefore may have use as an alternative excipient in regions where Sesamum radiatum can be easily cultivated
    • …
    corecore