196 research outputs found

    Implementing Adams Methods with Preassigned Stepsize Ratios

    Get PDF
    Runge-Kutta and Adams methods are the most popular codes to solve numerically nonstiff ODEs. The Adams methods are useful to reduce the number of function calls, but they usually require more CPU time than the Runge-Kutta methods. In this work we develop a numerical study of a variable step length Adams implementation, which can only take preassigned step-size ratios. Our aim is the reduction of the CPU time of the code by means of the precalculation of some coefficients. We present several numerical tests that show the behaviour of the proposed implementation

    The Coexpression of Reelin and Neuronal Nitric Oxide Synthase in a Subpopulation of Dentate Gyrus Neurons Is Downregulated in Heterozygous Reeler Mice

    Get PDF
    Reelin is an extracellular matrix protein expressed in several interneuron subtypes in the hippocampus and dentate gyrus. Neuronal nitric oxide synthase (nNOS) is also expressed by interneurons in these areas. We investigated whether reelin and nNOS are co-localized in the same population of hippocampal interneurons, and whether this colocalization is altered in the heterozygous reeler mouse. We found colocalization of nNOS in reelin-positive cells in the CA1 stratum radiatum and lacunosum moleculare, the CA3 stratum radiatum, and the dentate gyrus subgranular zone, molecular layer, and hilus. In heterozygous reeler mice, the colocalization of nNOS in reelin-positive cells was significantly decreased only in the subgranular zone and molecular layer. The coexpression of reelin and nNOS in several hippocampal regions suggests that reelin and nNOS may work synergistically to promote glutamatergic function, and the loss of this coexpression in heterozygous reeler mice may underlie some of the behavioral deficits observed in these animals

    Detection and dynamics of circulating tumor cells in patients with high-risk prostate cancer treated with radiotherapy and hormones: a prospective phase II study

    Get PDF
    BACKGROUND: Circulating tumor cells (CTCs) are an established prognostic marker in castration-resistant prostate cancer but have received little attention in localized high-risk disease. We studied the detection rate of CTCs in patients with high-risk prostate cancer before and after androgen deprivation therapy and radiotherapy to assess its value as a prognostic and monitoring marker. PATIENTS AND METHODS: We performed a prospective analysis of CTCs in the peripheral blood of 65 treatment-naive patients with high-risk prostate cancer. EpCAM-positive CTCs were enumerated using the CELLSEARCH system at 4 timepoints. A cut off of 0 vs >/= 1 CTC/7.5 ml blood was defined as a threshold for negative versus positive CTCs status. RESULTS: CTCs were detected in 5/65 patients (7.5%) at diagnosis, 8/62 (12.9%) following neoadjuvant androgen deprivation and 11/59 (18.6%) at the end of radiotherapy, with a median CTC count/7.5 ml of 1 (range, 1-136). Only 1 patient presented a positive CTC result 9 months after radiotherapy. Positive CTC status (at any timepoint) was not significantly associated with any clinical or pathologic factors. However, when we analyzed variations in CTC patterns following treatment, we observed a significant association between conversion of CTCs and stages T3 (P = 0.044) and N1 (P = 0.002). Detection of CTCs was not significantly associated with overall survival (P > 0.40). CONCLUSIONS: Our study showed a low detection rate for CTCs in patients with locally advanced high-risk prostate cancer. The finding of a de novo positive CTC count after androgen deprivation therapy is probably due to a passive mechanism associated with the destruction of the tumor. Further studies with larger samples and based on more accurate detection of CTCs are needed to determine the potential prognostic and therapeutic value of this approach in non-metastatic prostate cancer. TRIAL REGISTRATION: ClinicalTrials.gov ID: NCT01800058

    A sorghum practical haplotype graph facilitates genome‐wide imputation and cost‐effective genomic prediction

    Get PDF
    Successful management and utilization of increasingly large genomic datasets is essential for breeding programs to accelerate cultivar development. To help with this, we developed a Sorghum bicolor Practical Haplotype Graph (PHG) pangenome database that stores haplotypes and variant information. We developed two PHGs in sorghum that were used to identify genome-wide variants for 24 founders of the Chibas sorghum breeding program from 0.01x sequence coverage. The PHG called single nucleotide polymorphisms (SNPs) with 5.9% error at 0.01x coverage—only 3% higher than PHG error when calling SNPs from 8x coverage sequence. Additionally, 207 progenies from the Chibas genomic selection (GS) training population were sequenced and processed through the PHG. Missing genotypes were imputed from PHG parental haplotypes and used for genomic prediction. Mean prediction accuracies with PHG SNP calls range from .57–.73 and are similar to prediction accuracies obtained with genotyping-by-sequencing or targeted amplicon sequencing (rhAmpSeq) markers. This study demonstrates the use of a sorghum PHG to impute SNPs from low-coverage sequence data and shows that the PHG can unify genotype calls across multiple sequencing platforms. By reducing input sequence requirements, the PHG can decrease the cost of genotyping, make GS more feasible, and facilitate larger breeding populations. Our results demonstrate that the PHG is a useful research and breeding tool that maintains variant information from a diverse group of taxa, stores sequence data in a condensed but readily accessible format, unifies genotypes across genotyping platforms, and provides a cost-effective option for genomic selection

    Extracellular vesicles-based biomarkers represent a promising liquid biopsy in endometrial cancer

    Get PDF
    Tumor-derived extracellular vesicles (EVs) are secreted in large amounts into biological fluids of cancer patients. The analysis of EVs cargoes has been associated with patient´s outcome and response to therapy. However, current technologies for EVs isolation are tedious and low cost-e cient for routine clinical implementation. To explore the clinical value of circulating EVs analysis we attempted a proof-of-concept in endometrial cancer (EC) with ExoGAG, an easy to use and highly e cient new technology to enrich EVs. Technical performance was first evaluated using EVs secreted by Hec1A cells. Then, the clinical value of this strategy was questioned by analyzing the levels of two well-known tissue biomarkers in EC, L1 cell adhesion molecule (L1CAM) and Annexin A2 (ANXA2), in EVs purified from plasma in a cohort of 41 EC patients and 20 healthy controls. The results demonstrated the specific content of ANXA2 in the purified EVs fraction, with an accurate sensitivity and specificity for EC diagnosis. Importantly, high ANXA2 levels in circulating EVs were associated with high risk of recurrence and non-endometrioid histology suggesting a potential value as a prognostic biomarker in EC. These results also confirmed ExoGAG technology as a robust technique for the clinical implementation of circulating EVs analysesThis research was funded by Instituto de Salud Carlos III, grant PI17/01919, co-financed by the European Regional Development Fund (FEDER), and by Fundación Científica de la Asociación Española Contra el Cáncer (AECC), Grupos Clínicos Coordinados 2018. Carolina Herrero is supported by a predoctoral i-PFIS fellowship from Instituto de Salud Carlos III (IFI17/00047); Laura Muinelo is supported by Asociación Española Contra el Cáncer (AECC)

    EPAC-Lung:Pooled analysis of circulating tumor cells in advanced non-small cell lung cancer

    Get PDF
    Background: We assessed the clinical validity of circulating tumor cell (CTC) quantification for prognostication of patients with advanced non-small cell lung cancer (NSCLC) by undertaking a European pooled analysis of individual patient data. This is the largest study of its kind and the first to examine between-centre heterogeneity of CTC identification in NSCLC.Methods: Nine European NSCLC CTC centers were asked to provide reported/unreported anonymised data for patients with advanced NSCLC who participated in CellSearch CTC studies from January 2003 - March 2017. We used Cox regression models, stratified by centre, to establish the association between CTC count and survival. We assessed the added value of CTCs to prognostic clinico-pathological models using likelihood ratio (LR) statistics and c-indices.Results: Seven out of nine eligible centers provided data for 550 eligible patients, including 209 patients whose prognostic information was previously unpublished. CTC counts of ≥ 2 and ≥5 per 7·5 mL were associated with reduced progression-free survival (≥2 CTCs: HR 1.72, p < 0·001; ≥5 CTCs: HR 2.21, p < 0·001) and overall survival (≥2 CTCs: HR 2·18, p < 0·001; ≥5 CTCs: HR 2·75, p < 0·001), respectively. Survival prediction was significantly improved by addition of baseline CTC count to LR clinico-pathological models (log-transformed CTCs p < 0·0001; ≥2 CTCs p < 0·0001; ≥5 CTCs p < 0·0001), while more moderate improvements were observed with the use of c-index models. There was minor evidence of between-center heterogeneity in the effect on PFS, but not OS.No difference in CTC profile was observed between key NSCLC molecular subsets such as EGFR, ALK, and KRAS.Conclusions: These data confirm CTCs as an independent prognostic indicator of progression-free survival and overall survival in advanced NSCLC. CTC count improves prognostication when added to full clinico-pathological predictive models. ≥2 CTCs is an appropriate cutoff to move towards establishing clinical utility

    Domestication reshaped the genetic basis of inbreeding depression in a maize landrace compared to its wild relative, teosinte

    Get PDF
    Inbreeding depression is the reduction in fitness and vigor resulting from mating of close relatives observed in many plant and animal species. The extent to which the genetic load of mutations contributing to inbreeding depression is due to large-effect mutations versus variants with very small individual effects is unknown and may be affected by population history. We compared the effects of outcrossing and self-fertilization on 18 traits in a landrace population of maize, which underwent a population bottleneck during domestication, and a neighboring population of its wild relative teosinte. Inbreeding depression was greater in maize than teosinte for 15 of 18 traits, congruent with the greater segregating genetic load in the maize population that we predicted from sequence data. Parental breeding values were highly consistent between outcross and selfed offspring, indicating that additive effects determine most of the genetic value even in the presence of strong inbreeding depression. We developed a novel linkage scan to identify quantitative trait loci (QTL) representing large-effect rare variants carried by only a single parent, which were more important in teosinte than maize. Teosinte also carried more putative juvenile-acting lethal variants identified by segregation distortion. These results suggest a mixture of mostly polygenic, smalleffect partially recessive effects in linkage disequilibrium underlying inbreeding depression, with an additional contribution from rare larger-effect variants that was more important in teosinte but depleted in maize following the domestication bottleneck. Purging associated with the maize domestication bottleneck may have selected against some large effect variants, but polygenic load is harder to purge and overall segregating mutational burden increased in maize compared to teosinte

    EPAC-lung: pooled analysis of circulating tumour cells in advanced non-small cell lung cancer

    Get PDF
    Introduction: We assessed the clinical validity of circulating tumour cell (CTC) quantification for prognostication of patients with advanced non-small cell lung cancer (NSCLC) by undertaking a pooled analysis of individual patient data. Methods: Nine European NSCLC CTC centres were asked to provide reported/unreported pseudo-anonymised data for patients with advanced NSCLC who participated in CellSearch CTC studies from January 2003 to March 2017. We used Cox regression models, stratified by centres, to establish the association between CTC count and survival. We assessed the added value of CTCs to prognostic clinicopathological models using likelihood ratio (LR) statistics and c-indices. Results: Seven out of nine eligible centres provided data for 550 patients with prognostic information for overall survival. CTC counts of ≥2 and ≥ 5 per 7·5 mL were associated with reduced progression-free survival (≥2 CTCs: hazard ratio [HR] = 1.72, p < 0·001; ≥5 CTCs: HR = 2.21, p < 0·001) and overall survival (≥2 CTCs: HR = 2·18, p < 0·001; ≥5 CTCs: HR = 2·75, p < 0·001), respectively. Survival prediction was significantly improved by addition of baseline CTC count to LR clinicopathological models (log-transformed CTCs p < 0·001; ≥2 CTCs p < 0·001; ≥5 CTCs p ≤ 0·001 for both survival end-points), whereas moderate improvements were observed with the use of c-index models. There was some evidence of between-centre heterogeneity, especially when examining continuous counts of CTCs. Conclusions: These data confirm CTCs as an independent prognostic indicator of progression-free survival and overall survival in advanced NSCLC and also reveal some evidence of between-centre heterogeneity. CTC count improves prognostication when added to full clinicopathological predictive models

    Molecular profiling of circulating tumor cells links plasticity to the metastatic process in endometrial cancer

    Get PDF
    Background: About 20% of patients diagnosed with endometrial cancer (EC) are considered high-risk with unfavorable prognosis. In the framework of the European Network for Individualized Treatment in EC (ENITEC), we investigated the presence and phenotypic features of Circulating Tumor Cells (CTC) in high-risk EC patients. Methods: CTC isolation was carried out in peripheral blood samples from 34 patients, ranging from Grade 3 Stage IB to Stage IV carcinomas and recurrences, and 27 healthy controls using two methodologies. Samples were subjected to EpCAM-based immunoisolation using the CELLection™ Epithelial Enrich kit (Invitrogen, Dynal) followed by RTqPCR analysis. The phenotypic determinants of endometrial CTC in terms of pathogenesis, hormone receptor pathways, stem cell markers and epithelial to mesenchymal transition (EMT) drivers were asked. Kruskal-Wallis analysis followed by Dunn's post-test was used for comparisons between groups. Statistical significance was set at p < 0.05. Results: EpCAM-based immunoisolation positively detected CTC in high-risk endometrial cancer patients. CTC characterization indicated a remarkable plasticity phenotype defined by the expression of the EMT markers ETV5, NOTCH1, SNAI1, TGFB1, ZEB1 and ZEB2. In addition, the expression of ALDH and CD44 pointed to an association with stemness, while the expression of CTNNB1, STS, GDF15, RELA, RUNX1, BRAF and PIK3CA suggested potential therapeutic targets. We further recapitulated the EMT phenotype found in endometrial CTC through the up-regulation of ETV5 in an EC cell line, and validated in an animal model of systemic dissemination the propensity of these CTC in the accomplishment of metastasis. Conclusions: Our results associate the presence of CTC with high-risk EC. Gene-expression profiling characterized a CTC-plasticity phenotype with stemness and EMT features. We finally recapitulated this CTC-phenotype by over-expressing ETV5 in the EC cell line Hec1A and demonstrated an advantage in the promotion of metastasis in an in vivo mouse model of CTC dissemination and homing
    corecore