250 research outputs found

    Diagnostic and prognostic value of B4GALT1 hypermethylation and its clinical significance as a novel circulating cell-free DNA biomarker in colorectal cancer

    Get PDF
    Epigenetic modifications of glyco-genes have been documented in different types of cancer and are tightly linked to proliferation, invasiveness, metastasis, and drug resistance. This study aims to investigate the diagnostic, prognostic, and therapy-response predictive value of the glyco-gene B4GALT1 in colorectal cancer (CRC) patients. A Kaplan-Meier analysis was conducted in 1418 CRC patients (GEO and TCGA datasets) to assess the prognostic and therapy-response predictive values of the aberrant expression and methylation status of B4GALT1. Quantitative methylation-specific PCR (QMSP) and droplet digital quantitative methylation-specific PCR (dd-QMSP) were respectively used to detect hypermethylated B4GALT1 in metastasis and plasma in four cohorts of metastatic CRC cases (mCRC). Both the downregulated expression and promoter hypermethylation of B4GALT1 have a negative prognostic impact on CRC. Interestingly a low expression level of B4GALT1 was significantly associated with poor cetuximab response (progression-free survival (PFS) p = 0.01) particularly in wild-type (WT)-KRAS patients (p = 0.03). B4GALT1 promoter was aberrantly methylated in liver and lung metastases. The detection of hypermethylated B4GALT1 in plasma of mCRC patients showed a highly discriminative receiver operating characteristic (ROC) curve profile (area under curve (AUC) value 0.750; 95% CI: 0.592-0.908, p = 0.008), clearly distinguishing mCRC patients from healthy controls. Based on an optimal cut-off value defined by the ROC analysis, B4GALT1 yield a 100% specificity and a 50% sensitivity. These data support the potential value of B4GALT1 as an additional novel biomarker for the prediction of cetuximab response, and as a specific and sensitive diagnostic circulating biomarker that can be detected in CRC

    Detection and dynamics of circulating tumor cells in patients with high-risk prostate cancer treated with radiotherapy and hormones: a prospective phase II study

    Get PDF
    BACKGROUND: Circulating tumor cells (CTCs) are an established prognostic marker in castration-resistant prostate cancer but have received little attention in localized high-risk disease. We studied the detection rate of CTCs in patients with high-risk prostate cancer before and after androgen deprivation therapy and radiotherapy to assess its value as a prognostic and monitoring marker. PATIENTS AND METHODS: We performed a prospective analysis of CTCs in the peripheral blood of 65 treatment-naive patients with high-risk prostate cancer. EpCAM-positive CTCs were enumerated using the CELLSEARCH system at 4 timepoints. A cut off of 0 vs >/= 1 CTC/7.5 ml blood was defined as a threshold for negative versus positive CTCs status. RESULTS: CTCs were detected in 5/65 patients (7.5%) at diagnosis, 8/62 (12.9%) following neoadjuvant androgen deprivation and 11/59 (18.6%) at the end of radiotherapy, with a median CTC count/7.5 ml of 1 (range, 1-136). Only 1 patient presented a positive CTC result 9 months after radiotherapy. Positive CTC status (at any timepoint) was not significantly associated with any clinical or pathologic factors. However, when we analyzed variations in CTC patterns following treatment, we observed a significant association between conversion of CTCs and stages T3 (P = 0.044) and N1 (P = 0.002). Detection of CTCs was not significantly associated with overall survival (P > 0.40). CONCLUSIONS: Our study showed a low detection rate for CTCs in patients with locally advanced high-risk prostate cancer. The finding of a de novo positive CTC count after androgen deprivation therapy is probably due to a passive mechanism associated with the destruction of the tumor. Further studies with larger samples and based on more accurate detection of CTCs are needed to determine the potential prognostic and therapeutic value of this approach in non-metastatic prostate cancer. TRIAL REGISTRATION: ClinicalTrials.gov ID: NCT01800058

    EPAC-Lung:Pooled analysis of circulating tumor cells in advanced non-small cell lung cancer

    Get PDF
    Background: We assessed the clinical validity of circulating tumor cell (CTC) quantification for prognostication of patients with advanced non-small cell lung cancer (NSCLC) by undertaking a European pooled analysis of individual patient data. This is the largest study of its kind and the first to examine between-centre heterogeneity of CTC identification in NSCLC.Methods: Nine European NSCLC CTC centers were asked to provide reported/unreported anonymised data for patients with advanced NSCLC who participated in CellSearch CTC studies from January 2003 - March 2017. We used Cox regression models, stratified by centre, to establish the association between CTC count and survival. We assessed the added value of CTCs to prognostic clinico-pathological models using likelihood ratio (LR) statistics and c-indices.Results: Seven out of nine eligible centers provided data for 550 eligible patients, including 209 patients whose prognostic information was previously unpublished. CTC counts of ≥ 2 and ≥5 per 7·5 mL were associated with reduced progression-free survival (≥2 CTCs: HR 1.72, p < 0·001; ≥5 CTCs: HR 2.21, p < 0·001) and overall survival (≥2 CTCs: HR 2·18, p < 0·001; ≥5 CTCs: HR 2·75, p < 0·001), respectively. Survival prediction was significantly improved by addition of baseline CTC count to LR clinico-pathological models (log-transformed CTCs p < 0·0001; ≥2 CTCs p < 0·0001; ≥5 CTCs p < 0·0001), while more moderate improvements were observed with the use of c-index models. There was minor evidence of between-center heterogeneity in the effect on PFS, but not OS.No difference in CTC profile was observed between key NSCLC molecular subsets such as EGFR, ALK, and KRAS.Conclusions: These data confirm CTCs as an independent prognostic indicator of progression-free survival and overall survival in advanced NSCLC. CTC count improves prognostication when added to full clinico-pathological predictive models. ≥2 CTCs is an appropriate cutoff to move towards establishing clinical utility

    Extracellular vesicles-based biomarkers represent a promising liquid biopsy in endometrial cancer

    Get PDF
    Tumor-derived extracellular vesicles (EVs) are secreted in large amounts into biological fluids of cancer patients. The analysis of EVs cargoes has been associated with patient´s outcome and response to therapy. However, current technologies for EVs isolation are tedious and low cost-e cient for routine clinical implementation. To explore the clinical value of circulating EVs analysis we attempted a proof-of-concept in endometrial cancer (EC) with ExoGAG, an easy to use and highly e cient new technology to enrich EVs. Technical performance was first evaluated using EVs secreted by Hec1A cells. Then, the clinical value of this strategy was questioned by analyzing the levels of two well-known tissue biomarkers in EC, L1 cell adhesion molecule (L1CAM) and Annexin A2 (ANXA2), in EVs purified from plasma in a cohort of 41 EC patients and 20 healthy controls. The results demonstrated the specific content of ANXA2 in the purified EVs fraction, with an accurate sensitivity and specificity for EC diagnosis. Importantly, high ANXA2 levels in circulating EVs were associated with high risk of recurrence and non-endometrioid histology suggesting a potential value as a prognostic biomarker in EC. These results also confirmed ExoGAG technology as a robust technique for the clinical implementation of circulating EVs analysesThis research was funded by Instituto de Salud Carlos III, grant PI17/01919, co-financed by the European Regional Development Fund (FEDER), and by Fundación Científica de la Asociación Española Contra el Cáncer (AECC), Grupos Clínicos Coordinados 2018. Carolina Herrero is supported by a predoctoral i-PFIS fellowship from Instituto de Salud Carlos III (IFI17/00047); Laura Muinelo is supported by Asociación Española Contra el Cáncer (AECC)

    EPAC-lung: pooled analysis of circulating tumour cells in advanced non-small cell lung cancer

    Get PDF
    Introduction: We assessed the clinical validity of circulating tumour cell (CTC) quantification for prognostication of patients with advanced non-small cell lung cancer (NSCLC) by undertaking a pooled analysis of individual patient data. Methods: Nine European NSCLC CTC centres were asked to provide reported/unreported pseudo-anonymised data for patients with advanced NSCLC who participated in CellSearch CTC studies from January 2003 to March 2017. We used Cox regression models, stratified by centres, to establish the association between CTC count and survival. We assessed the added value of CTCs to prognostic clinicopathological models using likelihood ratio (LR) statistics and c-indices. Results: Seven out of nine eligible centres provided data for 550 patients with prognostic information for overall survival. CTC counts of ≥2 and ≥ 5 per 7·5 mL were associated with reduced progression-free survival (≥2 CTCs: hazard ratio [HR] = 1.72, p < 0·001; ≥5 CTCs: HR = 2.21, p < 0·001) and overall survival (≥2 CTCs: HR = 2·18, p < 0·001; ≥5 CTCs: HR = 2·75, p < 0·001), respectively. Survival prediction was significantly improved by addition of baseline CTC count to LR clinicopathological models (log-transformed CTCs p < 0·001; ≥2 CTCs p < 0·001; ≥5 CTCs p ≤ 0·001 for both survival end-points), whereas moderate improvements were observed with the use of c-index models. There was some evidence of between-centre heterogeneity, especially when examining continuous counts of CTCs. Conclusions: These data confirm CTCs as an independent prognostic indicator of progression-free survival and overall survival in advanced NSCLC and also reveal some evidence of between-centre heterogeneity. CTC count improves prognostication when added to full clinicopathological predictive models

    A sorghum practical haplotype graph facilitates genome‐wide imputation and cost‐effective genomic prediction

    Get PDF
    Successful management and utilization of increasingly large genomic datasets is essential for breeding programs to accelerate cultivar development. To help with this, we developed a Sorghum bicolor Practical Haplotype Graph (PHG) pangenome database that stores haplotypes and variant information. We developed two PHGs in sorghum that were used to identify genome-wide variants for 24 founders of the Chibas sorghum breeding program from 0.01x sequence coverage. The PHG called single nucleotide polymorphisms (SNPs) with 5.9% error at 0.01x coverage—only 3% higher than PHG error when calling SNPs from 8x coverage sequence. Additionally, 207 progenies from the Chibas genomic selection (GS) training population were sequenced and processed through the PHG. Missing genotypes were imputed from PHG parental haplotypes and used for genomic prediction. Mean prediction accuracies with PHG SNP calls range from .57–.73 and are similar to prediction accuracies obtained with genotyping-by-sequencing or targeted amplicon sequencing (rhAmpSeq) markers. This study demonstrates the use of a sorghum PHG to impute SNPs from low-coverage sequence data and shows that the PHG can unify genotype calls across multiple sequencing platforms. By reducing input sequence requirements, the PHG can decrease the cost of genotyping, make GS more feasible, and facilitate larger breeding populations. Our results demonstrate that the PHG is a useful research and breeding tool that maintains variant information from a diverse group of taxa, stores sequence data in a condensed but readily accessible format, unifies genotypes across genotyping platforms, and provides a cost-effective option for genomic selection

    CTCs expression profiling for advanced breast cancer monitoring

    Get PDF
    The study of circulating tumor cells (CTCs) has a huge clinical interest in advance and metastatic breast cancer patients. However, many approaches are biased by the use of epithelial markers, which underestimate non-epithelial CTCs phenotypes. CTCs enumeration provides valuable prognostic information; however, molecular characterization could be the best option to monitor patients throughout the disease since it may provide more relevant clinical information to the physicians. In this work, we aimed at enumerating and performing a molecular characterization of CTCs from a cohort of 20 patients with metastatic breast cancer (MBC), monitoring the disease at different time points of the therapy, and at progression when it occurred. To this end, we used a CTC negative enrichment protocol that allowed us to recover a higher variety of CTCs phenotypes. With this strategy, we were able to obtain gene expression data from CTCs from all the patients. In addition, we found that high expression levels of PALB2 and MYC were associated with a worse outcome. Interestingly, we identified that CTCs with an EpCAM(high)VIM(low)ALDH1A1(high) signature showed both shorter overall survival (OS) and progression-free survival (PFS), suggesting that CTCs with epithelial-stem features had the most aggressive phenotype

    Domestication reshaped the genetic basis of inbreeding depression in a maize landrace compared to its wild relative, teosinte

    Get PDF
    Inbreeding depression is the reduction in fitness and vigor resulting from mating of close relatives observed in many plant and animal species. The extent to which the genetic load of mutations contributing to inbreeding depression is due to large-effect mutations versus variants with very small individual effects is unknown and may be affected by population history. We compared the effects of outcrossing and self-fertilization on 18 traits in a landrace population of maize, which underwent a population bottleneck during domestication, and a neighboring population of its wild relative teosinte. Inbreeding depression was greater in maize than teosinte for 15 of 18 traits, congruent with the greater segregating genetic load in the maize population that we predicted from sequence data. Parental breeding values were highly consistent between outcross and selfed offspring, indicating that additive effects determine most of the genetic value even in the presence of strong inbreeding depression. We developed a novel linkage scan to identify quantitative trait loci (QTL) representing large-effect rare variants carried by only a single parent, which were more important in teosinte than maize. Teosinte also carried more putative juvenile-acting lethal variants identified by segregation distortion. These results suggest a mixture of mostly polygenic, smalleffect partially recessive effects in linkage disequilibrium underlying inbreeding depression, with an additional contribution from rare larger-effect variants that was more important in teosinte but depleted in maize following the domestication bottleneck. Purging associated with the maize domestication bottleneck may have selected against some large effect variants, but polygenic load is harder to purge and overall segregating mutational burden increased in maize compared to teosinte

    Immunotherapy in patients with brain metastasis: advances and challenges for the treatment and the application of circulating biomarkers

    Get PDF
    The central nervous system (CNS) is one of the most frequent metastatic sites of various cancers, including lung cancer, breast cancer and melanoma. The development of brain metastases requires a specific therapeutic approach and is associated with high mortality and morbidity in cancer patients. Advances in precision medicine and the introduction in recent years of new drugs, such as immunotherapy, have made it possible to improve the prognosis of these patients by improving survival and quality of life. New diagnostic techniques such as liquid biopsy allow real-time monitoring of tumor evolution, providing molecular information on prognostic and predictive biomarkers of response to treatment in blood or other fluids. In this review, we perform an exhaustive update of the clinical trials that demonstrate the utility of immunotherapy in patients with brain metastases and the potential of circulating biomarkers to improving the results of efficacy and toxicity in this subgroup of patients

    PEGylated Domain I of Beta-2-Glycoprotein I Inhibits the Binding, Coagulopathic, and Thrombogenic Properties of IgG From Patients With the Antiphospholipid Syndrome

    Get PDF
    APS is an autoimmune disease in which antiphospholipid antibodies (aPL) cause vascular thrombosis and pregnancy morbidity. In patients with APS, aPL exert pathogenic actions by binding serum beta-2-glycoprotein I (β2GPI) via its N-terminal domain I (DI). We previously showed that bacterially-expressed recombinant DI inhibits biological actions of IgG derived from serum of patients with APS (APS-IgG). DI is too small (7 kDa) to be a viable therapeutic agent. Addition of polyethylene glycol (PEGylation) to small molecules enhances the serum half-life, reduces proteolytic targeting and can decrease immunogenicity. It is a common method of tailoring pharmacokinetic parameters and has been used in the production of many therapies in the clinic. However, PEGylation of molecules may reduce their biological activity, and the size of the PEG group can alter the balance between activity and half-life extension. Here we achieve production of site-specific PEGylation of recombinant DI (PEG-DI) and describe the activities in vitro and in vivo of three variants with different size PEG groups. All variants were able to inhibit APS-IgG from: binding to whole β2GPI in ELISA, altering the clotting properties of human plasma and promoting thrombosis and tissue factor expression in mice. These findings provide an important step on the path to developing DI into a first-in-class therapeutic in APS
    corecore