11 research outputs found

    Digitalisation and COVID-19: The Perfect Storm

    Get PDF
    \u201cA ship in the harbour is safe, but that is not what ships are built for,\u201d observed that sage 19th century philosopher William Shedd. In other words, technology of high potential is of little value if the potential is not exploited. As the shape of 2020 is increasingly defined by the coronavirus pandemic, digitalisation is like a ship loaded with technology that has a huge capacity for transforming mankind\u2019s combat against infectious disease. But it is still moored safely in harbour. Instead of sailing bravely into battle, it remains at the dockside, cowering from the storm beyond the breakwaters. Engineers and fitters constantly fine-tune it, and its officers and deckhands perfect their operating procedures, but that promise is unfulfilled, restrained by the hesitancy and indecision of officialdom. Out there, the seas of the pandemic are turbulent and uncharted, and it is impossible to know in advance everything of the other dangers that may lurk beyond those cloudy horizons. However, the more noble course is for orders to be given to complete the preparations, to cast off and set sail, and to join other vessels crewed by valiant healthcare workers and tireless researchers, already deeply engaged in a rescue mission for the whole of the human race. It is the destiny of digitalisation to navigate those oceans alongside other members of that task force, and the hour of destiny has arrived. This article focuses on the potential enablers and recommendation to maximise learnings during the era of COVID-19

    Artificial Intelligence:Power for Civilisation - and for Better Healthcare

    No full text
    Artificial intelligence (AI) is changing the world we live in, and it has the potential to transform struggling healthcare systems with new efficiencies, new therapies, new diagnostics, and new economies. Already, AI is having an impact on healthcare, and new prospects of far greater advances open up daily. This paper sets out how AI can bring new precision to care, with benefits for patients and for society as a whole. But it also sets out the conditions for realizing the potential: key issues are ensuring adequate access to data, an appropriate regulatory environment, action to sustain innovation in research institutes and industry big and small, promotion of take-up of innovation by the healthcare establishment, and resolution of a range of vital legal and ethical questions centred on safeguarding patients and their rights. For Europe to fulfil the conditions for success, it will have to find a new spirit of cooperation that can overcome the handicaps of the continent's fragmented technical and legal landscape. The start the European Union has made shows some ambition, but a clearer strategic vision and firmer plans for implementation will be needed. The European Alliance for Personalised Medicine (EAPM) has listed its own priorities: data, integrating innovation into care, building trust, developing skills and constructing policy frameworks that guarantee infrastructure, equitable access, and legal clarity

    Artificial Intelligence: Power for Civilisation - and for Better Healthcare

    No full text
    Artificial intelligence (AI) is changing the world we live in, and it has the potential to transform struggling healthcare systems with new efficiencies, new therapies, new diagnostics, and new economies. Already, AI is having an impact on healthcare, and new prospects of far greater advances open up daily. This paper sets out how AI can bring new precision to care, with benefits for patients and for society as a whole. But it also sets out the conditions for realizing the potential: key issues are ensuring adequate access to data, an appropriate regulatory environment, action to sustain innovation in research institutes and industry big and small, promotion of take-up of innovation by the healthcare establishment, and resolution of a range of vital legal and ethical questions centred on safeguarding patients and their rights. For Europe to fulfil the conditions for success, it will have to find a new spirit of cooperation that can overcome the handicaps of the continent's fragmented technical and legal landscape. The start the European Union has made shows some ambition, but a clearer strategic vision and firmer plans for implementation will be needed. The European Alliance for Personalised Medicine (EAPM) has listed its own priorities: data, integrating innovation into care, building trust, developing skills and constructing policy frameworks that guarantee infrastructure, equitable access, and legal clarity

    Digitalisation and COVID-19:The Perfect Storm

    No full text
    "A ship in the harbour is safe, but that is not what ships are built for," observed that sage 19th century philosopher William Shedd. In other words, technology of high potential is of little value if the potential is not exploited. As the shape of 2020 is increasingly defined by the coronavirus pandemic, digitalisation is like a ship loaded with technology that has a huge capacity for transforming mankind's combat against infectious disease. But it is still moored safely in harbour. Instead of sailing bravely into battle, it remains at the dockside, cowering from the storm beyond the breakwaters. Engineers and fitters constantly fine-tune it, and its officers and deckhands perfect their operating procedures, but that promise is unfulfilled, restrained by the hesitancy and indecision of officialdom. Out there, the seas of the pandemic are turbulent and uncharted, and it is impossible to know in advance everything of the other dangers that may lurk beyond those cloudy horizons. However, the more noble course is for orders to be given to complete the preparations, to cast off and set sail, and to join other vessels crewed by valiant healthcare workers and tireless researchers, already deeply engaged in a rescue mission for the whole of the human race. It is the destiny of digitalisation to navigate those oceans alongside other members of that task force, and the hour of destiny has arrived. This article focuses on the potential enablers and recommendation to maximise learnings during the era of COVID-19.</p

    Zero Thermal Expansion in ZrMgMo<sub>3</sub>O<sub>12</sub>: NMR Crystallography Reveals Origins of Thermoelastic Properties

    No full text
    The coefficient of thermal expansion of ZrMgMo<sub>3</sub>O<sub>12</sub> has been measured and was found to be extremely close to zero over a wide temperature range including room temperature (αl = (1.6 ± 0.2) × 10<sup>–7</sup> K<sup>–1</sup> from 25 to 450 °C by X-ray diffraction (XRD)). ZrMgMo<sub>3</sub>O<sub>12</sub> belongs to the family of AMgM<sub>3</sub>O<sub>12</sub> materials, for which coefficients of thermal expansion have previously been reported to range from low-positive to low-negative. However, the low thermal expansion property had not previously been explained because atomic position information was not available for any members of this family of materials. We determined the structure of ZrMgMo<sub>3</sub>O<sub>12</sub> by nuclear magnetic resonance (NMR) crystallography, using <sup>91</sup>Zr, <sup>25</sup>Mg, <sup>95</sup>Mo, and <sup>17</sup>O magic angle spinning (MAS) and <sup>17</sup>O multiple quantum MAS (MQMAS) NMR in conjunction with XRD and density functional theory calculations. The resulting structure was of sufficient detail that the observed zero thermal expansion could be explained using quantitative measures of the properties of the coordination polyhedra. We also found that ZrMgMo<sub>3</sub>O<sub>12</sub> shows significant ionic conductivity, a property that is also related to its structure

    Data Science in Healthcare: Benefits, Challenges and Opportunities

    No full text
    The advent of digital medical data has brought an exponential increase in information available for each patient, allowing for novel knowledge generation methods to emerge. Tapping into this data brings clinical research and clinical practice closer together, as data generated in ordinary clinical practice can be used towards rapid-learning healthcare systems, continuously improving and personalizing healthcare. In this context, the recent use of Data Science technologies for healthcare is providing mutual benefits to both patients and medical professionals, improving prevention and treatment for several kinds of diseases. However, the adoption and usage of Data Science solutions for healthcare still require social capacity, knowledge and higher acceptance. The goal of this chapter is to provide an overview of needs, opportunities, recommendations and challenges of using (Big) Data Science technologies in the healthcare sector. This contribution is based on a recent whitepaper (http://www.bdva.eu/sites/default/files/Big%20Data%20Technologies%20in%20Healthcare.pdf) provided by the Big Data Value Association (BDVA) (http://www.bdva.eu/), the private counterpart to the EC to implement the BDV PPP (Big Data Value PPP) programme, which focuses on the challenges and impact that (Big) Data Science may have on the entire healthcare chain

    Prospective observational cohort study on grading the severity of postoperative complications in global surgery research

    Get PDF
    Background The Clavien–Dindo classification is perhaps the most widely used approach for reporting postoperative complications in clinical trials. This system classifies complication severity by the treatment provided. However, it is unclear whether the Clavien–Dindo system can be used internationally in studies across differing healthcare systems in high- (HICs) and low- and middle-income countries (LMICs). Methods This was a secondary analysis of the International Surgical Outcomes Study (ISOS), a prospective observational cohort study of elective surgery in adults. Data collection occurred over a 7-day period. Severity of complications was graded using Clavien–Dindo and the simpler ISOS grading (mild, moderate or severe, based on guided investigator judgement). Severity grading was compared using the intraclass correlation coefficient (ICC). Data are presented as frequencies and ICC values (with 95 per cent c.i.). The analysis was stratified by income status of the country, comparing HICs with LMICs. Results A total of 44 814 patients were recruited from 474 hospitals in 27 countries (19 HICs and 8 LMICs). Some 7508 patients (16·8 per cent) experienced at least one postoperative complication, equivalent to 11 664 complications in total. Using the ISOS classification, 5504 of 11 664 complications (47·2 per cent) were graded as mild, 4244 (36·4 per cent) as moderate and 1916 (16·4 per cent) as severe. Using Clavien–Dindo, 6781 of 11 664 complications (58·1 per cent) were graded as I or II, 1740 (14·9 per cent) as III, 2408 (20·6 per cent) as IV and 735 (6·3 per cent) as V. Agreement between classification systems was poor overall (ICC 0·41, 95 per cent c.i. 0·20 to 0·55), and in LMICs (ICC 0·23, 0·05 to 0·38) and HICs (ICC 0·46, 0·25 to 0·59). Conclusion Caution is recommended when using a treatment approach to grade complications in global surgery studies, as this may introduce bias unintentionally

    The surgical safety checklist and patient outcomes after surgery: a prospective observational cohort study, systematic review and meta-analysis

    Get PDF
    © 2017 British Journal of Anaesthesia Background: The surgical safety checklist is widely used to improve the quality of perioperative care. However, clinicians continue to debate the clinical effectiveness of this tool. Methods: Prospective analysis of data from the International Surgical Outcomes Study (ISOS), an international observational study of elective in-patient surgery, accompanied by a systematic review and meta-analysis of published literature. The exposure was surgical safety checklist use. The primary outcome was in-hospital mortality and the secondary outcome was postoperative complications. In the ISOS cohort, a multivariable multi-level generalized linear model was used to test associations. To further contextualise these findings, we included the results from the ISOS cohort in a meta-analysis. Results are reported as odds ratios (OR) with 95% confidence intervals. Results: We included 44 814 patients from 497 hospitals in 27 countries in the ISOS analysis. There were 40 245 (89.8%) patients exposed to the checklist, whilst 7508 (16.8%) sustained ≥1 postoperative complications and 207 (0.5%) died before hospital discharge. Checklist exposure was associated with reduced mortality [odds ratio (OR) 0.49 (0.32–0.77); P\u3c0.01], but no difference in complication rates [OR 1.02 (0.88–1.19); P=0.75]. In a systematic review, we screened 3732 records and identified 11 eligible studies of 453 292 patients including the ISOS cohort. Checklist exposure was associated with both reduced postoperative mortality [OR 0.75 (0.62–0.92); P\u3c0.01; I2=87%] and reduced complication rates [OR 0.73 (0.61–0.88); P\u3c0.01; I2=89%). Conclusions: Patients exposed to a surgical safety checklist experience better postoperative outcomes, but this could simply reflect wider quality of care in hospitals where checklist use is routine
    corecore