1,034 research outputs found

    Phenology determines seasonal variation in ectoparasite loads in a natural insect population

    Get PDF
    1. The extent to which individuals are parasitised is a function of exposure to parasites and the immune response, which in ectotherms may be associated with temperature. 2. We test the hypothesis that seasonal variation in ectoparasite burden is driven by temperature using an extensive mark-release-recapture study of adult Coenagrion puella (L.) (Zygoptera) as a model system. Mite counts were taken both at capture and on a subset of subsequent recaptures over two entire, consecutive breeding seasons. 3. Emergence date was the most significant factor in determining individual differences in mite burden, and mean counts for individuals emerging on the same days showed strong unimodal relationships with time of season. Subsequent recounting of mites on a subset of individuals showed that patterns of loss of mites were similar between seasons. 4. While temperature did not significantly affect mite burdens within seasons and ectoparasite prevalence was very similar across the two seasons, intensity of infection and rate of mite gain in unparasitised individuals were significantly higher in the cooler season. 5. We demonstrate that, while temperature may modulate the invertebrate immune response, this modulation does not manifest in variations in mite burdens in natural populations

    Geos 1 observations at Malvern, England

    Get PDF
    Satellite observation techniques and data processing methods at optical tracking station in Malvern, Englan

    Immune function and parasite resistance in male and polymorphic female Coenagrion puella

    Get PDF
    Background: Colour polymorphisms are widespread and one of the prime examples is the colour polymorphism in female coenagrionid damselflies: one female morph resembles the male colour (andromorph) while one, or more, female morphs are described as typically female (gynomorph). However, the selective pressures leading to the evolution and maintenance of this polymorphism are not clear. Here, based on the hypothesis that coloration and especially black patterning can be related to resistance against pathogens, we investigated the differences in immune function and parasite resistance between the different female morphs and males. Results: Our studies of immune function revealed no differences in immune function between the female morphs but between the sexes in adult damselflies. In an experimental infection females infected shortly after emergence showed a higher resistance against a fungal pathogen than males, however female morphs did not differ in resistance. In a field sample of adult damselflies we did not find differences in infection rates with watermites and gregarines. Conclusion: With respect to resistance and immune function 'andromorph' blue females of Coenagrion puella do not resemble the males. Therefore the colour polymorphism in coenagrionid damselflies is unlikely to be maintained by differences in immunity

    Design Fire for Building Content in Arson Scenarios

    Get PDF
    The cost of fires caused by arson on a global-scale is estimated between 0.1 and 0.4% of a country's GDP. If arsonist uses liquid accelerants is the potential for growth much greater and the risk for loss of live is increased. It is desirable to reduce this risk by anticipating the accelerant in the design phase. In this thesis the possibility of predicting components behaviour when accelerants are added is investigated by use of small-scale experiments. The specimens were ignited with a smaller ignition source and the heat release rate was measured using oxygen calorimetry. Data was analysed using factorial analysis and functional analysis. It was showed that both methanol and heptane affected parameters such as the time to peak, peak heat release rate and growth rate in a way that made the foam and fabrics behave worse. With superposition was it possible to predict the total heat released with a 12% error on average for standard non flame retarded foam. The increase in growth rates is found to be of such magnitude that accelerant as part of the ignition source should be accounted for in the design phase if an arson scenario is deemed likely

    Exposure of Larvae of the Solitary Bee Osmia bicornis to the Honey Bee Pathogen Nosema ceranae Affects Life History

    Get PDF
    Wild bees are important pollinators of wild plants and agricultural crops and they are threatened by several environmental stressors including emerging pathogens. Honey bees have been suggested as a potential source of pathogen spillover. One prevalent pathogen that has recently emerged as a honey bee disease is the microsporidian Nosema ceranae. While the impacts of N. ceranae in honey bees are well documented, virtually nothing is known about its effects in solitary wild bees. The solitary mason bee Osmia bicornis is a common pollinator in orchards and amenable to commercial management. Here, we experimentally exposed larvae of O. bicornis to food contaminated with N. ceranae and document spore presence during larval development. We measured mortality, growth parameters, and timing of pupation in a semi-field experiment. Hatched individuals were assessed for physiological state including fat body mass, wing muscle mass, and body size. We recorded higher mortality in the viable-spore-exposed group but could only detect a low number of spores among the individuals of this treatment. Viable-spore-treated individuals with higher head capsule width had a delayed pupation start. No impact on the physiological status could be detected in hatched imagines. Although we did not find overt evidence of O. bicornis infection, our findings indicate that exposure of larvae to viable N. ceranae spores could affect bee development

    Testing for knowledge : maximising information obtained from fire tests by using machine learning techniques

    Get PDF
    A machine learning (ML) algorithm was applied to predict the onset of flashover in 1:5 scale Room Corner Test experiments with sandwich panels. Towards this end, a penalized logistic regression model was chosen to detect the relevant variables and consequently provided a tool that can be used to make predictions of unseen samples. The method indicates that a deeper understanding of the contributing factors leading to flashover can be achieved. Furthermore, it allows a more nuanced ranking than currently offered by the commonly used classification methods for reaction to fire tests. The proposed methodology shows a substantial value in terms of guidance for future large and intermediate scale testing. In particular, it is foreseen that the method will be extremely useful for assessing and understanding the behaviour of innovative materials and design solutions

    Intraspecific predation in immature Coenagrion puella (L.): a switch in food selection? (Zygoptera: Coenagrionidae)

    Get PDF
    Observations on cannibalism in outdoor insectaries are presented. The behavioural interactions are described. Cannibalism (in both sexes) occurred only during periods of cold weather. It is hypothesised that intraspecific predation is a switch in food selection due to bad weather conditions

    Immune function keeps endosymbionts under control

    Get PDF
    How does an animal host prevent intracellular symbionts getting out of hand? A new paper in BMC Biology provides evidence that the mutualism between a beetle and its bacterial endosymbiont could be mediated through the expression of host immune genes

    Host and symbiont jointly control gut microbiota during complete metamorphosis

    Get PDF
    Holometabolous insects undergo a radical anatomical re-organisation during metamorphosis. This poses a developmental challenge: the host must replace the larval gut but at the same time retain symbiotic gut microbes and avoid infection by opportunistic pathogens. By manipulating host immunity and bacterial competitive ability, we study how the host Galleria mellonella and the symbiotic bacterium Enterococcus mundtii interact to manage the composition of the microbiota during metamorphosis. Disenabling one or both symbiotic partners alters the composition of the gut microbiota, which incurs fitness costs: adult hosts with a gut microbiota dominated by pathogens such as Serratia and Staphylococcus die early. Our results reveal an interaction that guarantees the safe passage of the symbiont through metamorphosis and benefits the resulting adult host. Host-symbiont “conspiracies” as described here are almost certainly widespread in holometobolous insects including many disease vectors

    Antimicrobial activity of cationic antimicrobial peptides against stationary phase bacteria

    Get PDF
    Antimicrobial peptides (AMPs) are ancient antimicrobial weapons used by multicellular organisms as components of their innate immune defenses. Because of the antibiotic crisis, AMPs have also become candidates for developing new drugs. Here, we show that five different AMPs of different classes are effective against non-dividing Escherichia coli and Staphylococcus aureus. By comparison, three conventional antibiotics from the main three classes of antibiotics poorly kill non-dividing bacteria at clinically relevant doses. The killing of fast-growing bacteria by AMPs is faster than that of slow-dividing bacteria and, in some cases, without any difference. Still, non-dividing bacteria are effectively killed over time. Our results point to a general property of AMPs, which might explain why selection has favored AMPs in the evolution of metazoan immune systems. The ability to kill non-dividing cells is another reason that makes AMPs exciting candidates for drug development
    corecore