149 research outputs found

    Diffusion-weighted imaging for the differential diagnosis of disorders affecting the hippocampus

    Get PDF
    Background: The human hippocampus can be affected in a large variety of very different neurological diseases, of which acute ischemic stroke, transient global amnesia, epilepsy, and limbic encephalitis are the most common. Less frequent etiologies include various infections and encephalopathy of different origins. Clinical presentation notably comprises confusional state, altered vigilance, memory deficits of various extent and seizures. While in hypoxic or hypoglycemic encephalopathy, clinical presentation and surrounding circumstances provide some clues to reach the correct diagnosis, in the above-listed more common disorders, signs and symptoms might overlap, making the differential diagnosis difficult. This review presents recent studies using the diffusion-weighted imaging (DWI) technique in diseases involving the hippocampus. Methods: References for the review were identified through searches of PubMed from 1965 to January 2011. Only papers published in English were reviewed. Full articles were obtained and references were checked for additional material where appropriate. Results: All pathologies affecting the hippocampus are associated with distinct lesion patterns on magnetic resonance imaging, and especially DWI has the ability to demonstrate even minute and transient hippocampal lesions. In acute ischemic stroke in the posterior cerebral artery territory, involvement of the hippocampal formation occurs in four distinct patterns on DWI that can be easily differentiated and correspond to the known vascular anatomy of the hippocampus. In the subacute phase after transient global amnesia (TGA), dot-like hyperintense lesions are regularly found in the lateral aspect of the hippocampus on DWI. The DWI lesions described after prolonged seizures or status epilepticus include unilateral or bilateral hippocampal, thalamic, and cortical lesions of various extent, not restricted to vascular territories. In limbic encephalitis, DWI lesions are only infrequently found and usually affect the hippocampus, uncus and amygdala. Furthermore, in some rare cases DWI lesions of different etiology may coexist. Conclusion: In patients with diseases affecting the hippocampus, DWI appears to be useful in differentiating between underlying pathologies and may facilitate a definite diagnosis conducive to an optimal treatment. With a careful clinical examination, experience with the interpretation of DWI findings and knowledge of associated phenomena, it is indeed possible to differentiate between ischemic, ictal, metabolic, and TGA-associated findings. Copyright (C) 2011 S. Karger AG, Base

    Brain imaging in patients with transient ischemic attack: a comparison of computed tomography and magnetic resonance imaging

    Get PDF
    Background: Brain imaging in stroke aims at the detection of the relevant ischemic tissue pathology. Cranial computed tomography (CT) is frequently used in patients with transient ischemic attack (TIA) but no data is available on how it directly compares to magnetic resonance imaging (MRI). Methods: We compared detection of acute ischemic lesions on CT and MRI in 215 consecutive TIA patients who underwent brain imaging with either CT (n = 161) or MRI (n = 54). An MRI was performed within 24 h in all patients who had CT initially. Results: An initial assessment with CT revealed no acute pathology in 154 (95.7%) and possible acute infarction in 7 (4.3%) patients. The acute infarct on CT was confirmed by diffusion-weighted imaging (DWI) in only 2 cases (28.6%). DWI detected an acute infarct in 50 of the 154 patients with normal baseline CT (32.5%). Among 54 patients without baseline CT, DWI showed acute ischemic lesions in 19 (35.2%). The ischemic lesions had a median volume of 0.87 cm 3 (range: 0.08–15.61), and the lesion pattern provided clues to the underlying etiology in 13.7%. Conclusion: Acute MRI is advantageous over CT to confirm the probable ischemic nature and to identify the etiology in TIA patients

    PLSDB: advancing a comprehensive database of bacterial plasmids

    Get PDF
    Plasmids are known to contain genes encoding for virulence factors and antibiotic resistance mechanisms. Their relevance in metagenomic data processing is steadily growing. However, with the increasing popularity and scale of metagenomics experiments, the number of reported plasmids is rapidly growing as well, amassing a considerable number of false positives due to undetected misassembles. Here, our previously published database PLSDB provides a reliable resource for researchers to quickly compare their sequences against selected and annotated previous findings. Within two years, the size of this resource has more than doubled from the initial 13,789 to now 34,513 entries over the course of eight regular data updates. For this update, we aggregated community feedback for major changes to the database featuring new analysis functionality as well as performance, quality, and accessibility improvements. New filtering steps, annotations, and preprocessing of existing records improve the quality of the provided data. Additionally, new features implemented in the web-server ease user interaction and allow for a deeper understanding of custom uploaded sequences, by visualizing similarity information. Lastly, an application programming interface was implemented along with a python library, to allow remote database queries in automated workflows. The latest release of PLSDB is freely accessible under https://www.ccb.uni-saarland.de/plsdb

    BusyBee Web : towards comprehensive and differential composition-based metagenomic binning

    Get PDF
    Despite recent methodology and reference database improvements for taxonomic profiling tools, metagenomic assembly and genomic binning remain important pillars of metagenomic analysis workflows. In case reference information is lacking, genomic binning is considered to be a state-of-the-art method in mixed culture metagenomic data analysis. In this light, our previously published tool BusyBee Web implements a composition-based binning method efficient enough to function as a rapid online utility. Handling assembled contigs and long nanopore generated reads alike, the webserver provides a wide range of supplementary annotations and visualizations. Half a decade after the initial publication, we revisited existing functionality, added comprehensive visualizations, and increased the number of data analysis customization options for further experimentation. The webserver now allows for visualizationsupported differential analysis of samples, which is computationally expensive and typically only performed in coverage-based binning methods. Further, users may now optionally check their uploaded samples for plasmid sequences using PLSDB as a reference database. Lastly, a new application programming interface with a supporting python package was implemented, to allow power users fully automated access to the resource and integration into existing workflows

    Comparison of Two-Dimensional- and Three-Dimensional-Based U-Net Architectures for Brain Tissue Classification in One-Dimensional Brain CT

    Get PDF
    Brain tissue segmentation plays a crucial role in feature extraction, volumetric quantification, and morphometric analysis of brain scans. For the assessment of brain structure and integrity, CT is a non-invasive, cheaper, faster, and more widely available modality than MRI. However, the clinical application of CT is mostly limited to the visual assessment of brain integrity and exclusion of copathologies. We have previously developed two-dimensional (2D) deep learning-based segmentation networks that successfully classified brain tissue in head CT. Recently, deep learning-based MRI segmentation models successfully use patch-based three-dimensional (3D) segmentation networks. In this study, we aimed to develop patch-based 3D segmentation networks for CT brain tissue classification. Furthermore, we aimed to compare the performance of 2D- and 3D-based segmentation networks to perform brain tissue classification in anisotropic CT scans. For this purpose, we developed 2D and 3D U-Net-based deep learning models that were trained and validated on MR-derived segmentations from scans of 744 participants of the Gothenburg H70 Cohort with both CT and T1-weighted MRI scans acquired timely close to each other. Segmentation performance of both 2D and 3D models was evaluated on 234 unseen datasets using measures of distance, spatial similarity, and tissue volume. Single-task slice-wise processed 2D U-Nets performed better than multitask patch-based 3D U-Nets in CT brain tissue classification. These findings provide support to the use of 2D U-Nets to segment brain tissue in one-dimensional (1D) CT. This could increase the application of CT to detect brain abnormalities in clinical settings

    Intracerebral delivery of 5-iodo-2'-deoxyuridine in combination with synchrotron stereotactic radiation for the therapy of the F98 glioma.

    Get PDF
    International audienceIodine-enhanced synchrotron stereotactic radiotherapy takes advantage of the radiation dose-enhancement produced by high-Z elements when irradiated with mono-energetic beams of synchrotron X-rays. In this study it has been investigated whether therapeutic efficacy could be improved using a thymidine analogue, 5-iodo-2'-deoxyuridine (IUdR), as a radiosentizing agent. IUdR was administered intracerebrally over six days to F98 glioma-bearing rats using Alzet osmotic pumps, beginning seven days after tumor implantation. On the 14th day, a single 15 Gy dose of 50 keV synchrotron X-rays was delivered to the brain. Animals were followed until the time of death and the primary endpoints of this study were the mean and median survival times. The median survival times for irradiation alone, chemotherapy alone or their combination were 44, 32 and 46 days, respectively, compared with 24 days for untreated controls. Each treatment alone significantly increased the rats' survival in comparison with the untreated group. Their combination did not, however, significantly improve survival compared with that of X-irradiation alone or chemotherapy alone. Further studies are required to understand why the combination of chemoradiotherapy was no more effective than X-irradiation alone

    CT-based volumetric measures obtained through deep learning: Association with biomarkers of neurodegeneration

    Get PDF
    INTRODUCTION: Cranial computed tomography (CT) is an affordable and widely available imaging modality that is used to assess structural abnormalities, but not to quantify neurodegeneration. Previously we developed a deep-learning–based model that produced accurate and robust cranial CT tissue classification. // MATERIALS AND METHODS: We analyzed 917 CT and 744 magnetic resonance (MR) scans from the Gothenburg H70 Birth Cohort, and 204 CT and 241 MR scans from participants of the Memory Clinic Cohort, Singapore. We tested associations between six CT-based volumetric measures (CTVMs) and existing clinical diagnoses, fluid and imaging biomarkers, and measures of cognition. // RESULTS: CTVMs differentiated cognitively healthy individuals from dementia and prodromal dementia patients with high accuracy levels comparable to MR-based measures. CTVMs were significantly associated with measures of cognition and biochemical markers of neurodegeneration. // DISCUSSION: These findings suggest the potential future use of CT-based volumetric measures as an informative first-line examination tool for neurodegenerative disease diagnostics after further validation

    Access, timing and frequency of very early stroke rehabilitation – insights from the Baden-Wuerttemberg stroke registry

    Get PDF
    Background: While the precise timing and intensity of very early rehabilitation (VER) after stroke onset is still under discussion, its beneficial effect on functional disability is generally accepted. The recently published randomized controlled AVERT trial indicated that patients with severe stroke might be more susceptible to harmful side effects of VER, which we hypothesized is contrary to current clinical practice. We analyzed the Baden-Wuerttemberg stroke registry to gain insight into the application of VER in acute ischemic stroke (IS) and intracerebral hemorrhage (ICH) in clinical practice. Methods: 99,753 IS patients and 8824 patients with ICH hospitalized from January 2008 to December 2012 were analyzed. Data on the access to physical therapy (PT), occupational therapy (OT), and speech therapy (ST), the time from admission to first contact with a therapist and the average number of therapy sessions during the first 7 days of admission are reported. Multiple logistic regression models adjusted for patient and treatment characteristics were carried out to investigate the influence of VER on clinical outcome. Results: PT was applied in 90/87% (IS/ICH), OT in 63/57%, and ST in 70/65% of the study population. Therapy was mostly initiated within 24 h (PT 87/82%) or 48 h after admission (OT 91/89% and ST 93/90%). Percentages of patients under therapy and also the average number of therapy sessions were highest in those with a discharge modified Rankin Scale score of 2 to 5 and lowest in patients with complete recovery or death during hospitalization. The outcome analyses were fundamentally hindered due to biases by individual decision making regarding the application and frequency of VER. Conclusions: While most patients had access to PT we noticed an undersupply of OT and ST. Only little differences were observed between patients with IS and ICH. The staff decisions for treatment seem to reflect attempts to optimize resources. Patients with either excellent or very unfavorable prognosis were less frequently assigned to VER and, if treated, received a lower average number of therapy sessions. On the contrary, severely disabled patients received VER at high frequency, although potentially harmful according to recent indications from the randomized controlled AVERT trial

    Diurnal Variation of Intravenous Thrombolysis Rates for Acute Ischemic Stroke and Associated Quality Performance Parameters

    Get PDF
    IntroductionBased on data from the Baden-Wuerttemberg stroke registry, we aimed to explore the diurnal variation of acute ischemic stroke (IS) care delivery.Materials and methods92,530 IS patients were included, of whom 37,471 (40%) presented within an onset-to-door time ≤4.5 h. Daytime was stratified in 3-h time intervals and working vs. non-working hours. Stroke onset and hospital admission time, rate of door-to-neurological examination time ≤30 min, onset-/door-to-imaging time IV thrombolysis (IVT) rates, and onset-/door-to-needle time were determined. Multivariable regression models were used stratified by stroke onset and hospital admission time to assess the relationship between IVT rates, quality performance parameters, and daytime. The time interval 0:00 h to 3:00 h and working hours, respectively, were taken as reference.ResultsThe IVT rate of the whole study population was strongly associated with the sleep–wake cycle. In patients presenting within the 4.5-h time window and potentially eligible for IVT stratification by hospital admission time identified two time intervals with lower IVT rates. First, between 3:01 h and 6:00 h (IVT rate 18%) and likely attributed to in-hospital delays with the lowest diurnal rate of door-to-neurological examination time ≤30 min and the longest door-to-needle time Second, between 6:01 h and 15:00 h (IVT rate 23–25%) compared to the late afternoon and evening hours (IVT rate 27–29%) due to a longer onset-to-imaging time and door-to-imaging time. No evidence for a compromised stroke service during non-working hours was observed.ConclusionThe analysis provides evidence that acute IS care is subject to diurnal variation which may affect stroke outcome. An optimization of IS care aiming at constantly high IVT rates over the course of the day therefore appears desirable

    About the lithospheric structure of central Tibet based on seismic data from the INDEPTH III profile

    Get PDF
    Signals from 11 shots and 8 earthquakes, and numerous teleseismic events were recorded along the 400-km seismic line INDEPTH III in central Tibet and interpreted together with previous seismic and tectonic data. The abnormal behavior of various mantle phases reveals a complex Moho-transition zone, especially in the northern part of the line, in the Changtang Block, where the lower crust and the mantle show unusually low velocities, a shingled appearance of Pn and no low-velocity layer in the upper crust. The strong east-west anisotropy in the Changtang Block is related to an easterly escape movement of the whole lithosphere, facilitated by the warm and weak layers in the lower crust and the upper mantle, bounded apparently by two prominent west-east running fault zones
    • …
    corecore