9 research outputs found

    Immune Response to SARS-CoV-2 Third Vaccine in Patients With Rheumatoid Arthritis Who Had No Seroconversion After Primary 2-Dose Regimen With Inactivated or Vector-Based Vaccines

    Get PDF
    Objective. The aim of this study was to assess the immune response after a third dose of SARS-CoV-2 vaccine in patients with rheumatoid arthritis (RA) with undetectable antibody titers after the primary regimen of 2 doses. Methods. Patients with RA with no seroconversion after 2 doses of SARS-CoV-2 vaccine and who received a third dose of either an mRNA or vector-based vaccine were included. Anti-SARS-CoV-2 IgG antibodies, neutralizing activity, and T cell responses were assessed after the third dose. Results. A total of 21 nonresponder patients were included. At the time of vaccination, 29% were receiving glucocorticoids and 85% biologic disease-modifying antirheumatic drugs (including 6 taking abatacept [ABA] and 4 taking rituximab [RTX]). The majority (95%) received the BNT162b2 vaccine and only one of them received the ChAdOx1 nCoV-19 vaccine. After the third dose, 91% of the patients presented detectable anti-SARS-CoV-2 IgG and 76% showed neutralizing activity. Compared to other treatments, ABA and RTX were associated with the absence of neutralizing activity in 4 out of 5 (80%) patients and lower titers of neutralizing antibodies (median 3, IQR 0-20 vs 8, IQR 4-128; P = 0.20). Specific T cell response was detected in 41% of all patients after the second dose, increasing to 71% after the third dose. The use of ABA was associated with a lower frequency of T cell response (33% vs 87%, P = 0.03). Conclusion. In this RA cohort, 91% of patients who failed to seroconvert after 2 doses of SARS-CoV-2 vaccine presented detectable anti-SARS-CoV-2 IgG after a third dose. The use of ABA was associated with a lower frequency of specific T cell response.Fil: Isnardi, Carolina A.. No especifíca;Fil: Cerda, Osvaldo L.. No especifíca;Fil: Landi, Margarita. Austral University Hospital; LiberiaFil: Cruces, Leonel Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas en Retrovirus y Sida. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Biomédicas en Retrovirus y Sida; ArgentinaFil: Schneeberger, Emilce E.. No especifíca;Fil: Montoro, Claudia Calle. Austral University Hospital; LiberiaFil: Alfaro, María Agustina. No especifíca;Fil: Roldán, Brian M.. No especifíca;Fil: Gómez Vara, Andrea B.. No especifíca;Fil: Giorgis, Pamela. No especifíca;Fil: Ezquer, Roberto Alejandro. No especifíca;Fil: Crespo Rocha, María G. No especifíca;Fil: Reyes Gómez, Camila R.. No especifíca;Fil: de Los Ángeles Correa, Mária. No especifíca;Fil: Rosemffet, Marcos G.. No especifíca;Fil: Abarza, Virginia Carrizo. No especifíca;Fil: Pellet, Santiago Catalan. Austral University Hospital; LiberiaFil: Perandones, Miguel. No especifíca;Fil: Reimundes, Cecilia. Austral University Hospital; LiberiaFil: Longueira, Yesica Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas en Retrovirus y Sida. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Biomédicas en Retrovirus y Sida; ArgentinaFil: Turk, Gabriela Julia Ana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas en Retrovirus y Sida. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Biomédicas en Retrovirus y Sida; ArgentinaFil: Quiroga, María Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas en Retrovirus y Sida. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Biomédicas en Retrovirus y Sida; ArgentinaFil: Laufer, Natalia Lorna. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas en Retrovirus y Sida. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Biomédicas en Retrovirus y Sida; ArgentinaFil: Quintana, Rosana Maris. No especifíca;Fil: de la Vega, María Celina. No especifíca;Fil: Kreplak, Nicolás. No especifíca;Fil: Pifano, Marina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Maid, Pablo. Austral University Hospital; LiberiaFil: Pons Estel, Guillermo J.. No especifíca;Fil: Citera, Gustavo. No especifíca

    No to <i>Neocosmospora</i>: Phylogenomic and Practical Reasons for Continued Inclusion of the <i>Fusarium solani</i> Species Complex in the Genus <i>Fusarium</i>

    No full text
    ABSTRACT This article is to alert medical mycologists and infectious disease specialists of recent name changes of medically important species of the filamentous mold Fusarium. Fusarium species can cause localized and life-threating infections in humans. Of the 70 Fusarium species that have been reported to cause infections, close to one-third are members of the Fusarium solani species complex (FSSC), and they collectively account for approximately two-thirds of all reported Fusarium infections. Many of these species were recently given scientific names for the first time by a research group in the Netherlands, but they were misplaced in the genus Neocosmospora. In this paper, we present genetic arguments that strongly support inclusion of the FSSC in Fusarium. There are potentially serious consequences associated with using the name Neocosmospora for Fusarium species because clinicians need to be aware that fusaria are broadly resistant to the spectrum of antifungals that are currently available

    No to Neocosmospora: Phylogenomic and Practical Reasons for Continued Inclusion of the Fusarium solani Species Complex in the Genus Fusarium.

    Get PDF
    This article is to alert medical mycologists and infectious disease specialists of recent name changes of medically important species of the filamentous mold Fusarium Fusarium species can cause localized and life-threating infections in humans. Of the 70 Fusarium species that have been reported to cause infections, close to one-third are members of the Fusarium solani species complex (FSSC), and they collectively account for approximately two-thirds of all reported Fusarium infections. Many of these species were recently given scientific names for the first time by a research group in the Netherlands, but they were misplaced in the genus Neocosmospora In this paper, we present genetic arguments that strongly support inclusion of the FSSC in Fusarium There are potentially serious consequences associated with using the name Neocosmospora for Fusarium species because clinicians need to be aware that fusaria are broadly resistant to the spectrum of antifungals that are currently available

    Shapes of love in the miracle testimonies of the Virgin of Chiquinquirá, New Kingdom of Granada, 1587 to 1694

    No full text
    A trilogy of texts composed between 1587 and 1694 memorialize the origin of and early devotion to the Virgin of Chiquinquirá in the New Kingdom of Granada: an información jurídica (original ecclesiastical investigation of reported miracles ordered by the archbishop of Bogotá); a manuscript collection of 234 miracle testimonies, long-lost and never studied until now; and the first published history of the cult. The devotees whose experiences comprise these texts had turned to Mary of Chiquinquirá with deeply personal needs and received miraculous interventions. Later, they recounted their experiences under oath before witnesses. This essay examines those accounts, finding vestiges of local society and culture and, more importantly, illumination of the testators\u27 enacted feelings about themselves and others. The essay argues that within the intimate space of a spiritual emotional community, miracle testimonies which purport to focus on love for the Virgin of Chiquinquirá actually reveal a great deal about human love

    A global metagenomic map of urban microbiomes and antimicrobial resistance

    No full text
    We present a global atlas of 4,728 metagenomic samples from mass-transit systems in 60 cities over 3 years, representing the first systematic, worldwide catalog of the urban microbial ecosystem. This atlas provides an annotated, geospatial profile of microbial strains, functional characteristics, antimicrobial resistance (AMR) markers, and genetic elements, including 10,928 viruses, 1,302 bacteria, 2 archaea, and 838,532 CRISPR arrays not found in reference databases. We identified 4,246 known species of urban microorganisms and a consistent set of 31 species found in 97% of samples that were distinct from human commensal organisms. Profiles of AMR genes varied widely in type and density across cities. Cities showed distinct microbial taxonomic signatures that were driven by climate and geographic differences. These results constitute a high-resolution global metagenomic atlas that enables discovery of organisms and genes, highlights potential public health and forensic applications, and provides a culture-independent view of AMR burden in cities.Funding: the Tri-I Program in Computational Biology and Medicine (CBM) funded by NIH grant 1T32GM083937; GitHub; Philip Blood and the Extreme Science and Engineering Discovery Environment (XSEDE), supported by NSF grant number ACI-1548562 and NSF award number ACI-1445606; NASA (NNX14AH50G, NNX17AB26G), the NIH (R01AI151059, R25EB020393, R21AI129851, R35GM138152, U01DA053941); STARR Foundation (I13- 0052); LLS (MCL7001-18, LLS 9238-16, LLS-MCL7001-18); the NSF (1840275); the Bill and Melinda Gates Foundation (OPP1151054); the Alfred P. Sloan Foundation (G-2015-13964); Swiss National Science Foundation grant number 407540_167331; NIH award number UL1TR000457; the US Department of Energy Joint Genome Institute under contract number DE-AC02-05CH11231; the National Energy Research Scientific Computing Center, supported by the Office of Science of the US Department of Energy; Stockholm Health Authority grant SLL 20160933; the Institut Pasteur Korea; an NRF Korea grant (NRF-2014K1A4A7A01074645, 2017M3A9G6068246); the CONICYT Fondecyt Iniciación grants 11140666 and 11160905; Keio University Funds for Individual Research; funds from the Yamagata prefectural government and the city of Tsuruoka; JSPS KAKENHI grant number 20K10436; the bilateral AT-UA collaboration fund (WTZ:UA 02/2019; Ministry of Education and Science of Ukraine, UA:M/84-2019, M/126-2020); Kyiv Academic Univeristy; Ministry of Education and Science of Ukraine project numbers 0118U100290 and 0120U101734; Centro de Excelencia Severo Ochoa 2013–2017; the CERCA Programme / Generalitat de Catalunya; the CRG-Novartis-Africa mobility program 2016; research funds from National Cheng Kung University and the Ministry of Science and Technology; Taiwan (MOST grant number 106-2321-B-006-016); we thank all the volunteers who made sampling NYC possible, Minciencias (project no. 639677758300), CNPq (EDN - 309973/2015-5), the Open Research Fund of Key Laboratory of Advanced Theory and Application in Statistics and Data Science – MOE, ECNU, the Research Grants Council of Hong Kong through project 11215017, National Key RD Project of China (2018YFE0201603), and Shanghai Municipal Science and Technology Major Project (2017SHZDZX01) (L.S.

    Evolution over Time of Ventilatory Management and Outcome of Patients with Neurologic Disease∗

    No full text
    OBJECTIVES: To describe the changes in ventilator management over time in patients with neurologic disease at ICU admission and to estimate factors associated with 28-day hospital mortality. DESIGN: Secondary analysis of three prospective, observational, multicenter studies. SETTING: Cohort studies conducted in 2004, 2010, and 2016. PATIENTS: Adult patients who received mechanical ventilation for more than 12 hours. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Among the 20,929 patients enrolled, we included 4,152 (20%) mechanically ventilated patients due to different neurologic diseases. Hemorrhagic stroke and brain trauma were the most common pathologies associated with the need for mechanical ventilation. Although volume-cycled ventilation remained the preferred ventilation mode, there was a significant (p &lt; 0.001) increment in the use of pressure support ventilation. The proportion of patients receiving a protective lung ventilation strategy was increased over time: 47% in 2004, 63% in 2010, and 65% in 2016 (p &lt; 0.001), as well as the duration of protective ventilation strategies: 406 days per 1,000 mechanical ventilation days in 2004, 523 days per 1,000 mechanical ventilation days in 2010, and 585 days per 1,000 mechanical ventilation days in 2016 (p &lt; 0.001). There were no differences in the length of stay in the ICU, mortality in the ICU, and mortality in hospital from 2004 to 2016. Independent risk factors for 28-day mortality were age greater than 75 years, Simplified Acute Physiology Score II greater than 50, the occurrence of organ dysfunction within first 48 hours after brain injury, and specific neurologic diseases such as hemorrhagic stroke, ischemic stroke, and brain trauma. CONCLUSIONS: More lung-protective ventilatory strategies have been implemented over years in neurologic patients with no effect on pulmonary complications or on survival. We found several prognostic factors on mortality such as advanced age, the severity of the disease, organ dysfunctions, and the etiology of neurologic disease

    Global attitudes in the management of acute appendicitis during COVID-19 pandemic: ACIE Appy Study

    No full text
    Background: Surgical strategies are being adapted to face the COVID-19 pandemic. Recommendations on the management of acute appendicitis have been based on expert opinion, but very little evidence is available. This study addressed that dearth with a snapshot of worldwide approaches to appendicitis. Methods: The Association of Italian Surgeons in Europe designed an online survey to assess the current attitude of surgeons globally regarding the management of patients with acute appendicitis during the pandemic. Questions were divided into baseline information, hospital organization and screening, personal protective equipment, management and surgical approach, and patient presentation before versus during the pandemic. Results: Of 744 answers, 709 (from 66 countries) were complete and were included in the analysis. Most hospitals were treating both patients with and those without COVID. There was variation in screening indications and modality used, with chest X-ray plus molecular testing (PCR) being the commonest (19\ub78 per cent). Conservative management of complicated and uncomplicated appendicitis was used by 6\ub76 and 2\ub74 per cent respectively before, but 23\ub77 and 5\ub73 per cent, during the pandemic (both P < 0\ub7001). One-third changed their approach from laparoscopic to open surgery owing to the popular (but evidence-lacking) advice from expert groups during the initial phase of the pandemic. No agreement on how to filter surgical smoke plume during laparoscopy was identified. There was an overall reduction in the number of patients admitted with appendicitis and one-third felt that patients who did present had more severe appendicitis than they usually observe. Conclusion: Conservative management of mild appendicitis has been possible during the pandemic. The fact that some surgeons switched to open appendicectomy may reflect the poor guidelines that emanated in the early phase of SARS-CoV-2
    corecore