13 research outputs found

    The USP7/Dnmt1 complex stimulates the DNA methylation activity of Dnmt1 and regulates the stability of UHRF1

    Get PDF
    Aberrant DNA methylation is often associated with cancer and the formation of tumors; however, the underlying mechanisms, in particular the recruitment and regulation of DNA methyltransferases remain largely unknown. In this study, we identified USP7 as an interaction partner of Dnmt1 and UHRF1 in vivo. Dnmt1 and USP7 formed a soluble dimer complex that associated with UHRF1 as a trimeric complex on chromatin. Complex interactions were mediated by the C-terminal domain of USP7 with the TS-domain of Dnmt1, whereas the TRAF-domain of USP7 bound to the SRA-domain of UHRF1. USP7 was capable of targeting UHRF1 for deubiquitination and affects UHRF1 protein stability in vivo. Furthermore, Dnmt1, UHRF1 and USP7 co-localized on silenced, methylated genes in vivo. Strikingly, when analyzing the impact of UHRF1 and USP7 on Dnmt1-dependent DNA methylation, we found that USP7 stimulated both the maintenance and de novo DNA methylation activity of Dnmt1 in vitro. Therefore, we propose a dual role of USP7, regulating the protein turnover of UHRF1 and stimulating the enzymatic activity of Dnmt1 in vitro and in vivo

    Human Ind1, an Iron-Sulfur Cluster Assembly Factor for Respiratory Complex I

    No full text
    Respiratory complex I (NADH:ubiquinone oxidoreductase) is a large mitochondrial inner membrane enzyme consisting of 45 subunits and 8 iron-sulfur (Fe/S) clusters. While complex I dysfunction is the most common reason for mitochondrial diseases, the assembly of complex I and its Fe/S cofactors remains elusive. Here, we identify the human mitochondrial P-loop NTPase, designated huInd1, that is critically required for the assembly of complex I. huInd1 can bind an Fe/S cluster via a conserved CXXC motif in a labile fashion. Knockdown of huInd1 in HeLa cells by RNA interference technology led to strong decreases in complex I protein and activity levels, remodeling of respiratory supercomplexes, and alteration of mitochondrial morphology. In addition, huInd1 depletion resulted in massive decreases in several subunits (NDUFS1, NDUFV1, NDUFS3, and NDUFA13) of the peripheral arm of complex I, with the concomitant appearance of a 450-kDa subcomplex representing part of the membrane arm. By a novel radiolabeling technique, the amount of iron associated with complex I was also shown to reflect the dependence of this enzyme on huInd1 for assembly. Together, these data identify huInd1 as a new assembly factor for human respiratory complex I with a possible role in the delivery of one or more Fe/S clusters to complex I subunits

    Treatment of chronic plaque-stage psoriasis and psoriatic arthritis with mycophenolate mofetil

    No full text
    Mycophenolate mofetil (MMF), a widely used immunosuppressant in organ transplantation, is a recent addition to the therapeutic armamentarium of autoimmune and inflammatory skin disorders in dermatology. We describe 5 patients with moderate to severe chronic plaque psoriasis and 6 patients with psoriatic arthritis that was refractory to conventional systemic and/or topical antipsoriatic treatment who were treated with MMF monotherapy (2 g/d) in a 10-week study. Although MMF was tolerated well in all patients, only patients with moderate psoriasis and psoriatic arthritis improved with therapy, whereas patients with severe psoriasis did not respond to MMF. Although MMF seems to be effective and safe for blistering autoimmune diseases and pyoderma gangrenosum, our data do not allow optimistic statements on the use of MMF in severe plaque-stage psoriasis. However, MMF may develop into an interesting therapeutic alternative for patients with psoriatic arthritis

    Analysis of Transcriptional Regulation of the Human miR-17-92 Cluster; Evidence for Involvement of Pim-1

    Get PDF
    The human polycistronic miRNA cluster miR-17-92 is frequently overexpressed in hematopoietic malignancies and cancers. Its transcription is in part controlled by an E2F-regulated host gene promoter. An intronic A/T-rich region directly upstream of the miRNA coding region also contributes to cluster expression. Our deletion analysis of the A/T-rich region revealed a strong dependence on c-Myc binding to the functional E3 site. Yet, constructs lacking the 5'-proximal ~1.3 kb or 3'-distal ~0.1 kb of the 1.5 kb A/T-rich region still retained residual specific promoter activity, suggesting multiple transcription start sites (TSS) in this region. Furthermore, the protooncogenic kinase, Pim-1, its phosphorylation target HP1γ and c-Myc colocalize to the E3 region, as inferred from chromatin immunoprecipitation. Analysis of pri-miR-17-92 expression levels in K562 and HeLa cells revealed that silencing of E2F3, c-Myc or Pim-1 negatively affects cluster expression, with a synergistic effect caused by c-Myc/Pim-1 double knockdown in HeLa cells. Thus, we show, for the first time, that the protooncogene Pim-1 is part of the network that regulates transcription of the human miR-17-92 cluster
    corecore