638 research outputs found

    On the ion coupling mechanism of the MATE transporter ClbM

    Get PDF
    Bacteria use a number of mechanisms to defend themselves from antimicrobial drugs. One important defense strategy is the ability to export drugs by multidrug transporters. One class of multidrug transporter, the so-called multidrug and toxic compound extrusion (MATE) transporters, extrude a variety of antibiotic compounds from the bacterial cytoplasm. These MATE transporters are driven by a Na+, H+, or combined Na+/H+ gradient, and act as antiporters to drive a conformational change in the transporter from the outward to the inward-facing conformation. In the inward-facing conformation, a chemical compound (drug) binds to the protein, resulting in a switch to the opposite conformation, thereby extruding the drug. Using molecular dynamics simulations, we now report the structural basis for Na+ and H+ binding in the dual ion coupled MATE transporter ClbM from Escherichia coli, which is connected to colibactin-induced genotoxicity, yielding novel insights into the ion/drug translocation mechanism of this bacterial transporter.</p

    Dynamics of crowded vesicle: local and global responses to membrane composition

    No full text
    The bacterial cell envelope is composed of a mixture of different lipids and proteins, making it an inherently complex organelle. The interactions between integral membrane proteins and lipids are crucial for their respective spatial localization within bacterial cells. We have employed microsecond timescale coarse-grained molecular dynamics simulations of vesicles of varying sizes and with a range of protein and lipid compositions, and used novel approaches to measure both local and global system dynamics, the latter based on spherical harmonics analysis. Our results suggest that both hydrophobic mismatch, enhanced by embedded membrane proteins, and curvature based sorting, due to different modes of undulation, may drive assembly in vesicular systems. Interestingly, the modes of undulation of the vesicles were found to be altered by the specific protein and lipid composition of the vesicle. Strikingly, lipid dynamics were shown to be coupled to proteins up to 6 nm from their surface, a substantially larger distance than has previously been observed, resulting in multi-layered annular rings enriched with particular types of phospholipid. Such large protein-lipid complexes may provide a mechanism for long-range communication. Given the complexity of bacterial membranes, our results suggest that subtle changes in lipid composition may have major implications for lipid and protein sorting under a curvature-based membrane-sorting model

    The pseudo-circular genomes of Flaviviruses: structures, mechanisms, and functions of circularization

    Get PDF
    © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).The circularization of viral genomes fulfills various functions, from evading host defense mechanisms to promoting specific replication and translation patterns supporting viral proliferation. Here, we describe the genomic structures and associated host factors important for flaviviruses genome circularization and summarize their functional roles. Flaviviruses are relatively small, single-stranded, positive-sense RNA viruses with genomes of approximately 11 kb in length. These genomes contain motifs at their 5' and 3' ends, as well as in other regions, that are involved in circularization. These motifs are highly conserved throughout the Flavivirus genus and occur both in mature virions and within infected cells. We provide an overview of these sequence motifs and RNA structures involved in circularization, describe their linear and circularized structures, and discuss the proteins that interact with these circular structures and that promote and regulate their formation, aiming to clarify the key features of genome circularization and understand how these affect the flaviviruses life cycle.This research was supported by Fundação para a Ciência e a Tecnologia—Ministério da Ciência, Tecnologia e Ensino Superior (FCT-MCTES, Portugal) and the Calouste Gulbenkian Foundation (FCG, Portugal) project Science Frontiers Research Prize 2010. N.M.S. acknowledges FCT-MCTES fellowship SFRH/BD/144585/2019. I.C.M. acknowledges FCT-MCTES program “Concurso de Estímulo ao Emprego Científico” (CEECIND/01670/2017).info:eu-repo/semantics/publishedVersio

    Linker length affects photostability of protein-targeted sensor of cellular microviscosity.

    Get PDF
    Viscosity sensitive fluorophores termed 'molecular rotors' represent a convenient and quantitative tool for measuring intracellular viscosity via Fluorescence Lifetime Imaging Microscopy (FLIM). We compare the FLIM performance of two BODIPY-based molecular rotors bound to HaloTag protein expressed in different subcellular locations. While both rotors are able to penetrate live cells and specifically label the desired intracellular location, we found that the rotor with a longer HaloTag protein recognition motif was significantly affected by photo-induced damage when bound to the HaloTag protein, while the other dye showed no changes upon irradiation. Molecular dynamics modelling indicates that the irradiation-induced electron transfer between the BODIPY moiety and the HaloTag protein is a plausible explanation for these photostability issues. Our results demonstrate that binding to the targeted protein may significantly alter the photophysical behaviour of a fluorescent probe and therefore its thorough characterisation in the protein bound form is essential prior to any in vitro and in cellulo applications

    Molecular simulations unravel the molecular principles that mediate selective permeability of carboxysome shell protein

    Get PDF
    Bacterial microcompartments (BMCs) are nanoscale proteinaceous organelles that encapsulate enzymes from the cytoplasm using an icosahedral protein shell that resembles viral capsids. Of particular interest are the carboxysomes (CBs), which sequester the CO 2 -fixing enzymes ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) to enhance carbon assimilation. The carboxysome shell serves as a semi-permeable barrier for passage of metabolites in and out of the carboxysome to enhance CO 2 fixation. How the protein shell directs influx and efflux of molecules in an effective manner has remained elusive. Here we use molecular dynamics and umbrella sampling calculations to determine the free-energy profiles of the metabolic substrates, bicarbonate, CO 2 and ribulose bisphosphate and the product 3-phosphoglycerate associated with their transition through the major carboxysome shell protein CcmK2. We elucidate the electrostatic charge-based permeability and key amino acid residues of CcmK2 functioning in mediating molecular transit through the central pore. Conformational changes of the loops forming the central pore may also be required for transit of specific metabolites. The importance of these in-silico findings is validated experimentally by site-directed mutagenesis of the key CcmK2 residue Serine 39. This study provides insight into the mechanism that mediates molecular transport through the shells of carboxysomes, applicable to other BMCs. It also offers a predictive approach to investigate and manipulate the shell permeability, with the intend of engineering BMC-based metabolic modules for new functions in synthetic biology

    Phase chaos in the anisotropic complex Ginzburg-Landau Equation

    Full text link
    Of the various interesting solutions found in the two-dimensional complex Ginzburg-Landau equation for anisotropic systems, the phase-chaotic states show particularly novel features. They exist in a broader parameter range than in the isotropic case, and often even broader than in one dimension. They typically represent the global attractor of the system. There exist two variants of phase chaos: a quasi-one dimensional and a two-dimensional solution. The transition to defect chaos is of intermittent type.Comment: 4 pages RevTeX, 5 figures, little changes in figures and references, typos removed, accepted as Rapid Commun. in Phys. Rev.

    Copper oxide nanoparticle toxicity profiling using untargeted metabolomics

    Get PDF
    BackgroundThe rapidly increasing number of engineered nanoparticles (NPs), and products containing NPs, raises concerns for human exposure and safety. With this increasing, and ever changing, catalogue of NPs it is becoming more difficult to adequately assess the toxic potential of new materials in a timely fashion. It is therefore important to develop methods which can provide high-throughput screening of biological responses. The use of omics technologies, including metabolomics, can play a vital role in this process by providing relatively fast, comprehensive, and cost-effective assessment of cellular responses. These techniques thus provide the opportunity to identify specific toxicity pathways and to generate hypotheses on how to reduce or abolish toxicity.ResultsWe have used untargeted metabolome analysis to determine differentially expressed metabolites in human lung epithelial cells (A549) exposed to copper oxide nanoparticles (CuO NPs). Toxicity hypotheses were then generated based on the affected pathways, and critically tested using more conventional biochemical and cellular assays. CuO NPs induced regulation of metabolites involved in oxidative stress, hypertonic stress, and apoptosis. The involvement of oxidative stress was clarified more easily than apoptosis, which involved control experiments to confirm specific metabolites that could be used as standard markers for apoptosis; based on this we tentatively propose methylnicotinamide as a generic metabolic marker for apoptosis.ConclusionsOur findings are well aligned with the current literature on CuO NP toxicity. We thus believe that untargeted metabolomics profiling is a suitable tool for NP toxicity screening and hypothesis generation

    The Asteroseismic Poltential of TESS: Exoplanet-Host Stars

    Get PDF
    New insights on stellar evolution and stellar interior physics are being made possible by asteroseismology. Throughout the course of the Kepler mission, asteroseismology has also played an important role in the characterization of exoplanet-host stars and their planetary systems. The upcoming NASA Transiting Exoplanet Survey Satellite (TESS) will be performing a near all-sky survey for planets that transit bright nearby stars. In addition, its excellent photometric precision, combined with its fine time sampling and long intervals of uninterrupted observations, will enable asteroseismology of solar-type and red-giant stars. Here we develop a simple test to estimate the detectability of solar-like oscillations in TESS photometry of any given star. Based on an all-sky stellar and planetary synthetic population, we go on to predict the asteroseismic yield of the TESS mission, placing emphasis on the yield of exoplanet-host stars for which we expect to detect solar-like oscillations. This is done for both the target stars (observed at a 2-minute cadence) and the full-frame-image stars (observed at a 30-minute cadence). A similar exercise is also conducted based on a compilation of known host stars. We predict that TESS will detect solar-like oscillations in a few dozen target hosts (mainly subgiant stars but also in a smaller number of F dwarfs), in up to 200 low-luminosity red-giant hosts, and in over 100 solar-type and red-giant known hosts, thereby leading to a threefold improvement in the asteroseismic yield of exoplanet-host stars when compared to Kepler's.Science and Technology Facilities Council (Great Britain

    Designed Azolopyridinium Salts Block Protective Antigen Pores In Vitro and Protect Cells from Anthrax Toxin

    Get PDF
    Background:Several intracellular acting bacterial protein toxins of the AB-type, which are known to enter cells by endocytosis, are shown to produce channels. This holds true for protective antigen (PA), the binding component of the tripartite anthrax-toxin of Bacillus anthracis. Evidence has been presented that translocation of the enzymatic components of anthrax-toxin across the endosomal membrane of target cells and channel formation by the heptameric/octameric PA63 binding/translocation component are related phenomena. Chloroquine and some 4-aminoquinolones, known as potent drugs against Plasmodium falciparium infection of humans, block efficiently the PA63-channel in a dose dependent way.Methodology/Principal Findings:Here we demonstrate that related positively charged heterocyclic azolopyridinium salts block the PA63-channel in the μM range, when both, inhibitor and PA63 are added to the same side of the membrane, the cis-side, which corresponds to the lumen of acidified endosomal vesicles of target cells. Noise-analysis allowed the study of the kinetics of the plug formation by the heterocycles. In vivo experiments using J774A.1 macrophages demonstrated that the inhibitors of PA63-channel function also efficiently block intoxication of the cells by the combination lethal factor and PA63 in the same concentration range as they block the channels in vitro.Conclusions/Significance:These results strongly argue in favor of a transport of lethal factor through the PA63-channel and suggest that the heterocycles used in this study could represent attractive candidates for development of novel therapeutic strategies against anthrax. © 2013 Beitzinger et al
    • …
    corecore