23 research outputs found

    Lsd1 ablation triggers metabolic reprogramming of brown adipose tissue

    Get PDF
    Previous work indicated that lysine-specific demethylase 1 (Lsd1) can positively regulate the oxidative and thermogenic capacities of white and beige adipocytes. Here we investigate the role of Lsd1 in brown adipose tissue (BAT) and find that BAT- selective Lsd1 ablation induces a shift from oxidative to glycolytic metabolism. This shift is associated with downregulation of BAT-specific and upregulation of white adipose tissue (WAT)-selective gene expression. This results in the accumulation of di- and triacylglycerides and culminates in a profound whitening of BAT in aged Lsd1- deficient mice. Further studies show that Lsd1 maintains BAT properties via a dual role. It activates BAT-selective gene expression in concert with the transcription factor Nrf1 and represses WAT-selective genes through recruitment of the CoREST complex. In conclusion, our data uncover Lsd1 as a key regulator of gene expression and metabolic function in BAT

    Case-oriented computer-based-training in radiology: concept, implementation and evaluation

    Get PDF
    BACKGROUND: Providing high-quality clinical cases is important for teaching radiology. We developed, implemented and evaluated a program for a university hospital to support this task. METHODS: The system was built with Intranet technology and connected to the Picture Archiving and Communications System (PACS). It contains cases for every user group from students to attendants and is structured according to the ACR-code (American College of Radiology) [2]. Each department member was given an individual account, could gather his teaching cases and put the completed cases into the common database. RESULTS: During 18 months 583 cases containing 4136 images involving all radiological techniques were compiled and 350 cases put into the common case repository. Workflow integration as well as individual interest influenced the personal efforts to participate but an increasing number of cases and minor modifications of the program improved user acceptance continuously. 101 students went through an evaluation which showed a high level of acceptance and a special interest in elaborate documentation. CONCLUSION: Electronic access to reference cases for all department members anytime anywhere is feasible. Critical success factors are workflow integration, reliability, efficient retrieval strategies and incentives for case authoring

    A new MRI rating scale for progressive supranuclear palsy and multiple system atrophy: validity and reliability

    Get PDF
    AIM To evaluate a standardised MRI acquisition protocol and a new image rating scale for disease severity in patients with progressive supranuclear palsy (PSP) and multiple systems atrophy (MSA) in a large multicentre study. METHODS The MRI protocol consisted of two-dimensional sagittal and axial T1, axial PD, and axial and coronal T2 weighted acquisitions. The 32 item ordinal scale evaluated abnormalities within the basal ganglia and posterior fossa, blind to diagnosis. Among 760 patients in the study population (PSP = 362, MSA = 398), 627 had per protocol images (PSP = 297, MSA = 330). Intra-rater (n = 60) and inter-rater (n = 555) reliability were assessed through Cohen's statistic, and scale structure through principal component analysis (PCA) (n = 441). Internal consistency and reliability were checked. Discriminant and predictive validity of extracted factors and total scores were tested for disease severity as per clinical diagnosis. RESULTS Intra-rater and inter-rater reliability were acceptable for 25 (78%) of the items scored (≥ 0.41). PCA revealed four meaningful clusters of covarying parameters (factor (F) F1: brainstem and cerebellum; F2: midbrain; F3: putamen; F4: other basal ganglia) with good to excellent internal consistency (Cronbach α 0.75-0.93) and moderate to excellent reliability (intraclass coefficient: F1: 0.92; F2: 0.79; F3: 0.71; F4: 0.49). The total score significantly discriminated for disease severity or diagnosis; factorial scores differentially discriminated for disease severity according to diagnosis (PSP: F1-F2; MSA: F2-F3). The total score was significantly related to survival in PSP (p<0.0007) or MSA (p<0.0005), indicating good predictive validity. CONCLUSIONS The scale is suitable for use in the context of multicentre studies and can reliably and consistently measure MRI abnormalities in PSP and MSA. Clinical Trial Registration Number The study protocol was filed in the open clinical trial registry (http://www.clinicaltrials.gov) with ID No NCT00211224

    Vestibular loss causes hippocampal atrophy and impaired spatial memory in humans

    No full text
    Brandt T, Schautzer F, Hamilton DA, et al. Vestibular loss causes hippocampal atrophy and impaired spatial memory in humans. BRAIN. 2005;128(11):2732-2741.The human hippocampal formation plays a crucial role in various aspects of memory processing. Most literature on the human hippocampus stresses its non-spatial memory functions, but older work in rodents and some other species emphasized the role of the hippocampus in spatial learning and memory as well. A few human studies also point to a direct relation between hippocampal size, navigation and spatial memory. Conversely, the importance of the vestibular system for navigation and spatial memory was until now convincingly demonstrated only in animals. Using magnetic resonance imaging volumetry, we found that patients (n = 10) with acquired chronic bilateral vestibular loss (BVL) develop a significant selective atrophy of the hippocampus (16.9% decrease relative to controls). When tested with a virtual variant (on a PC) of the Morris water task these patients exhibited significant spatial memory and navigation deficits that closely matched the pattern of hippocampal atrophy. These spatial memory deficits were not associated with general memory deficits. The current data on BVL patients and bilateral hippocampal atrophy revive the idea that a major-and probably phylogenetically ancient-function of the archicortical hippocampal tissue is still evident in spatial aspects of memory processing for navigation. Furthermore, these data demonstrate for the first time in humans that spatial navigation critically depends on preserved vestibular function, even when the subjects are stationary, e.g. without any actual vestibular or somatosensory stimulation

    Percutaneous Hepatic Perfusion (PHP) with Melphalan in Liver-Dominant Metastatic Uveal Melanoma: The German Experience

    No full text
    Percutaneous hepatic perfusion (PHP) delivers high-dose melphalan to the liver while minimizing systemic toxicity via filtration of the venous hepatic blood. This two-center study aimed to examine the safety, response to therapy, and survival of patients with hepatic-dominant metastatic uveal melanoma (UM) treated with PHP. A total of 66 patients with liver-dominant metastasized uveal melanoma, treated with 145 PHP between April 2014 and May 2020, were retrospectively analyzed with regard to adverse events (AEs; CTCAE v5.0), response (overall response rate (ORR)), and disease control rate (DCR) according to RECIST1.1, as well as progression-free and overall survival (PFS and OS). With an ORR of 59% and a DCR of 93.4%, the response was encouraging. After initial PHP, median hepatic PFS was 12.4 (confidence interval (CI) 4–18.4) months and median OS was 18.4 (CI 7–24.6) months. Hematologic toxicity was the most frequent AE (grade 3 or 4 thrombocytopenia after 24.8% of the procedures); less frequent was grade 3 or 4 hepatic toxicity (increased aspartate transaminase (AST) and alanine transaminase (ALT) after 7.6% and 6.9% of the interventions, respectively). Cardiovascular events included four cases of ischemic stroke (2.8%) and one patient with central pulmonary embolism (0.7%). In conclusion, PHP is a safe and effective salvage treatment for liver-dominant metastatic uveal melanoma. Serious AEs—though rare—demand careful patient selection

    Vestibular loss causes hippocampal atrophy and impaired spatial memory in humans, Brain 128

    No full text
    The human hippocampal formation plays a crucial role in various aspects of memory processing. Most literature on the human hippocampus stresses its non-spatial memory functions, but older work in rodents and some other species emphasized the role of the hippocampus in spatial learning and memory as well. A few human studies also point to a direct relation between hippocampal size, navigation and spatial memory. Conversely, the importance of the vestibular system for navigation and spatial memory was until now convincingly demonstrated only in animals. Using magnetic resonance imaging volumetry, we found that patients (n = 10) with acquired chronic bilateral vestibular loss (BVL) develop a significant selective atrophy of the hippocampus (16.9% decrease relative to controls). When tested with a virtual variant (on a PC) of the Morris water task these patients exhibited significant spatial memory and navigation deficits that closely matched the pattern of hippocampal atrophy. These spatial memory deficits were not associated with general memory deficits. The current data on BVL patients and bilateral hippocampal atrophy revive the idea that a major-and probably phylogenetically ancient-function of the archicortical hippocampal tissue is still evident in spatial aspects of memory processing for navigation. Furthermore, these data demonstrate for the first time in humans that spatial navigation critically depends on preserved vestibular function, even when the subjects are stationary, e.g. without any actual vestibular or somatosensory stimulation. Keywords: hippocampus; bilateral vestibular failure; spatial memory; navigation Abbreviations: BVL = bilateral vestibular loss; VMWT = virtual Morris water task; GM = grey matter; WM = white matte

    Influence of decreased solvent permittivity on the structure and magnesium(II)-binding properties of the catalytic domain 5 of a group II intron ribozyme

    Full text link
    Although it is well known that the so-called “equivalent solution” or “effective” solvent permittivity (dielectric constant) in proteins and nucleic acids is lower than in bulk water, this fact is commonly neglected in (bioinorganic) studies of such compounds. Using domain 5 of the group II intron ribozyme Sc.ai5γ, we describe here the influence of 1,4-dioxane-d8 on the structure and magnesium(II)-binding properties of this catalytic domain. Applying one- and two-dimensional NMR, we observe distinct structural changes in the functionally important bulge region following a decrease in solvent permittivity. Concomitantly, an increase by a factor of 1.5 in the affinity of Mg2+ towards the individual-binding sites in the catalytic core domain is observed upon addition of 1,4-dioxane-d8. This has led to the detection of a new metal ion coordination site near the GU wobble pair in the catalytic triad. Our results show that solvent permittivity is an important factor in the formation of intrinsic RNA structures and affects their metal ion-binding properties. Hence, solvent permittivity should be taken into account in future studies
    corecore