640 research outputs found

    A water-soluble form of porin from the mitochondrial outer membrane of Neurospora crassa

    Get PDF
    Mitochondrial porin, the outer membrane pore-forming protein, was isolated in the presence of detergents and converted into a water- soluble form. This water-soluble porin existed under nondenaturing conditions as a mixture of dimers and oligomers. The proportion of dimers increased with decreasing porin concentration during conversion. Water-soluble porin inserted spontaneously into artificial bilayers as did detergent-solubilized porin. Whereas the latter form had no specific requirements for the lipid composition of the bilayer, water- soluble porin inserted only into membranes containing a sterol, and only in the presence of very low concentrations of Triton X-100 (0.001% w/v) in the solution bathing the bilayer. The channels formed by water- soluble porin were indistinguishable from those formed by detergent- purified porin with respect to specific conductance and voltage dependence of conductance. Water-soluble porin bound tightly in a saturable fashion to isolated mitochondria. The bound form was readily accessible to added protease, indicating its presence on the mitochondrial surface. The number of binding sites was in the range of 5-10 pmol/mg of mitochondrial protein. Water-soluble porin apparently binds to a site on the assembly pathway of the porin precursor, since mitochondria whose binding sites were saturated with the water-soluble form did not import porin precursor synthesized in a cell-free system

    Bacterial membrane injuries induced by lactacin F and nisin

    Get PDF
    The combined action of nisin and lactacin F, two bacteriocins produced by lactic acid bacteria, is additive. In this report, the basis of this effect is examined. Channels formed by lactacin F were studied by experiments using planar lipid bilayers, and bactericidal effects were analyzed by flow cytometry. Lactacin F produced pores with a conductance of 1 ns in black lipid bilayers in 1 mM KClat 10 mV at 20°C. Pore formation was strongly dependent on voltage. Although lactacin F formed pores at very low potential (10 mV), the dependence was exponentialabov e 40 mV. The injuries induced by nisin and lactacin F in the membranes of Lactobacillus helveticus produced different flow cytometric profiles. Probably, when both bacteriocins are present, each acts separately; their cooperation may be due to an increase in the number of single membrane injuries

    Extracellular calcium reduction strongly increases the lytic capacity of pneumolysin from streptococcus pneumoniae in brain tissue

    Get PDF
    Background. Streptococcus pneumoniae causes serious diseases such as pneumonia and meningitis. Its major pathogenic factor is the cholesterol-dependent cytolysin pneumolysin, which produces lytic pores at high concentrations. At low concentrations, it has other effects, including induction of apoptosis. Many cellular effects of pneumolysin appear to be calcium dependent. Methods. Live imaging of primary mouse astroglia exposed to sublytic amounts of pneumolysin at various concentrations of extracellular calcium was used to measure changes in cellular permeability (as judged by lactate dehydrogenase release and propidium iodide chromatin staining). Individual pore properties were analyzed by conductance across artificial lipid bilayer. Tissue toxicity was studied in continuously oxygenated acute brain slices. Results. The reduction of extracellular calcium increased the lytic capacity of the toxin due to increased membrane binding. Reduction of calcium did not influence the conductance properties of individual toxin pores. In acute cortical brain slices, the reduction of extracellular calcium from 2 to 1 mM conferred lytic activity to pathophysiologically relevant nonlytic concentrations of pneumolysin. Conclusions. Reduction of extracellular calcium strongly enhanced the lytic capacity of pneumolysin due to increased membrane binding. Thus, extracellular calcium concentration should be considered as a factor of primary importance for the course of pneumococcal meningitis

    Targeting the Ets Binding Site of the HER2/neu Promoter with Pyrrole-Imidazole Polyamides

    Get PDF
    Three DNA binding polyamides (1-3) were synthesized that bind with high affinity (Ka = 8.7·10^9 M^-1 to 1.4·10^10 M^-1) to two 7-base pair sequences overlapping the Ets DNA binding site (EBS; GAGGAA) within the regulatory region of the HER2/neu proximal promoter. As measured by electrophoretic mobility shift assay, polyamides binding to flanking elements upstream (1) or downstream (2 and 3) of the EBS were one to two orders of magnitude more effective than the natural product distamycin at inhibiting formation of complexes between the purified EBS protein, epithelial restricted with serine box (ESX), and the HER2/neu promoter probe. One polyamide, 2, completely blocked Ets-DNA complex formation at 10 nM ligand concentration, whereas formation of activator protein-2-DNA complexes was unaffected at the activator protein-2 binding site immediately upstream of the HER2/neu EBS, even at 100 nM ligand concentration. At equilibrium, polyamide 1 was equally effective at inhibiting Ets/DNA binding when added before or after in vitro formation of protein-promoter complexes, demonstrating its utility to disrupt endogenous Ets-mediated HER2/neu preinitiation complexes. Polyamide 2, the most potent inhibitor of Ets-DNA complex formation by electrophoretic mobility shift assay, was also the most effective inhibitor of HER2/neu promoter-driven transcription measured in a cell-free system using nuclear extract from an ESX- and HER2/neu-overexpressing human breast cancer cell line, SKBR-3

    Designed Azolopyridinium Salts Block Protective Antigen Pores In Vitro and Protect Cells from Anthrax Toxin

    Get PDF
    Background:Several intracellular acting bacterial protein toxins of the AB-type, which are known to enter cells by endocytosis, are shown to produce channels. This holds true for protective antigen (PA), the binding component of the tripartite anthrax-toxin of Bacillus anthracis. Evidence has been presented that translocation of the enzymatic components of anthrax-toxin across the endosomal membrane of target cells and channel formation by the heptameric/octameric PA63 binding/translocation component are related phenomena. Chloroquine and some 4-aminoquinolones, known as potent drugs against Plasmodium falciparium infection of humans, block efficiently the PA63-channel in a dose dependent way.Methodology/Principal Findings:Here we demonstrate that related positively charged heterocyclic azolopyridinium salts block the PA63-channel in the μM range, when both, inhibitor and PA63 are added to the same side of the membrane, the cis-side, which corresponds to the lumen of acidified endosomal vesicles of target cells. Noise-analysis allowed the study of the kinetics of the plug formation by the heterocycles. In vivo experiments using J774A.1 macrophages demonstrated that the inhibitors of PA63-channel function also efficiently block intoxication of the cells by the combination lethal factor and PA63 in the same concentration range as they block the channels in vitro.Conclusions/Significance:These results strongly argue in favor of a transport of lethal factor through the PA63-channel and suggest that the heterocycles used in this study could represent attractive candidates for development of novel therapeutic strategies against anthrax. © 2013 Beitzinger et al

    Microscopic Aspects of Stretched Exponential Relaxation (SER) in Homogeneous Molecular and Network Glasses and Polymers

    Full text link
    Because the theory of SER is still a work in progress, the phenomenon itself can be said to be the oldest unsolved problem in science, as it started with Kohlrausch in 1847. Many electrical and optical phenomena exhibit SER with probe relaxation I(t) ~ exp[-(t/{\tau}){\beta}], with 0 < {\beta} < 1. Here {\tau} is a material-sensitive parameter, useful for discussing chemical trends. The "shape" parameter {\beta} is dimensionless and plays the role of a non-equilibrium scaling exponent; its value, especially in glasses, is both practically useful and theoretically significant. The mathematical complexity of SER is such that rigorous derivations of this peculiar function were not achieved until the 1970's. The focus of much of the 1970's pioneering work was spatial relaxation of electronic charge, but SER is a universal phenomenon, and today atomic and molecular relaxation of glasses and deeply supercooled liquids provide the most reliable data. As the data base grew, the need for a quantitative theory increased; this need was finally met by the diffusion-to-traps topological model, which yields a remarkably simple expression for the shape parameter {\beta}, given by d*/(d* + 2). At first sight this expression appears to be identical to d/(d + 2), where d is the actual spatial dimensionality, as originally derived. The original model, however, failed to explain much of the data base. Here the theme of earlier reviews, based on the observation that in the presence of short-range forces only d* = d = 3 is the actual spatial dimensionality, while for mixed short- and long-range forces, d* = fd = d/2, is applied to four new spectacular examples, where it turns out that SER is useful not only for purposes of quality control, but also for defining what is meant by a glass in novel contexts. (Please see full abstract in main text

    Negative regulation of mitochondrial VDAC channels by C-Raf kinase

    Get PDF
    BACKGROUND: Growth of cancer cells results from the disturbance of positive and negative growth control mechanisms and the prolonged survival of these genetically altered cells due to the failure of cellular suicide programs. Genetic and biochemical approaches have identified Raf family serine/threonine kinases B-Raf and C-Raf as major mediators of cell survival. C-Raf cooperates with Bcl-2/Bcl-X(L) in suppression of apoptosis by a mechanism that involves targeting of C-Raf to the outer mitochondrial membrane and inactivation of the pro-apoptotic protein Bad. However, apoptosis suppression by C-Raf also occurs in cells lacking expression of Bad or Bcl-2. RESULTS: Here we show that even in the absence of Bcl-2/Bcl-X(L), mitochondria-targeted C-Raf inhibits cytochrome c release and caspase activation induced by growth factor withdrawal. To clarify the mechanism of Bcl-2 independent survival control by C-Raf at the mitochondria a search for novel mitochondrial targets was undertaken that identified voltage-dependent anion channel (VDAC), a mitochondrial protein (porin) involved in exchange of metabolites for oxidative phosphorylation. C-Raf forms a complex with VDAC in vivo and blocks reconstitution of VDAC channels in planar bilayer membranes in vitro. CONCLUSION: We propose that this interaction may be responsible for the Raf-induced inhibition of cytochrome c release from mitochondria in growth factor starved cells. Moreover, C-Raf kinase-induced VDAC inhibition may regulate the metabolic function of mitochondria and mediate the switch to aerobic glycolysis that is common to cancer cells

    Porins in the Genus Borrelia

    Get PDF
    corecore