10 research outputs found

    Verification of H2O lines from the HITRAN database for remote sensing of the water vapour isotopic composition

    Get PDF
    The quality of the spectroscopic line parameters from the HITRAN Database for remote sensing of the water vapour isotopic composition of the atmosphere is widely discussed. In this research we show that the HITRAN-2008 data for H2O isotopologues in the near infrared spectral range (4000-6400 cm-1) is reasonably good. The HITRAN data was tested with independent calculation (ab initio et al.). For the evaluation we've used two following criteria: a quality of the fitting of atmospheric spectra measured at the Ural Atmospheric Station (UAS, Kourovka) with the high-resolution Fourier-transform infrared spectrometer and an agreement between the retrieved HDO/H2O relative concentration ratios in the atmospheric column and the results of the simulation of the isotopic general circulation model ECHAM5-wiso (validated for Kourovka region). © (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only

    Optimization of the photon path length probability density function-simultaneous (PPDF-S) method and evaluation of CO 2 retrieval performance under dense aerosol conditions

    Get PDF
    The photon path length probability density function-simultaneous (PPDF-S) algorithm is effective for retrieving column-averaged concentrations of carbon dioxide (XCO 2 ) and methane (XCH 4 ) from Greenhouse gases Observing Satellite (GOSAT) spectra in Short Wavelength InfraRed (SWIR). Using this method, light-path modification attributable to light reflection/scattering by atmospheric clouds/aerosols is represented by the modification of atmospheric transmittance according to PPDF parameters. We optimized PPDF parameters for a more accurate XCO 2 retrieval under aerosol dense conditions based on simulation studies for various aerosol types and surface albedos. We found a more appropriate value of PPDF parameters referring to the vertical profile of CO 2 concentration as a measure of a stable solution. The results show that the constraint condition of a PPDF parameter that represents the light reflectance effect by aerosols is sufficiently weak to affect XCO 2 adversely. By optimizing the constraint, it was possible to obtain a stable solution of XCO 2 . The new optimization was applied to retrieval analysis of the GOSAT data measured in Western Siberia. First, we assumed clear sky conditions and retrieved XCO 2 from GOSAT data obtained near Yekaterinburg in the target area. The retrieved XCO 2 was validated through a comparison with ground-based Fourier Transform Spectrometer (FTS) measurements made at the Yekaterinburg observation site. The validation results showed that the retrieval accuracy was reasonable. Next, we applied the optimized method to dense aerosol conditions when biomass burning was active. The results demonstrated that optimization enabled retrieval, even under smoky conditions, and that the total number of retrieved data increased by about 70%. Furthermore, the results of the simulation studies and the GOSAT data analysis suggest that atmospheric aerosol types that affected CO 2 analysis are identifiable by the PPDF parameter value. We expect that we will be able to suggest a further improved algorithm after the atmospheric aerosol types are identified. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.Russian Science Foundation: 18-11-00024Acknowledgments: The v3.0 ACOS/OCO-2 absorption coefficient (ABSCO) tables, used for the calculation of gas absorption coefficients, were provided by NASA and the ACOS/OCO-2 project. Vyacheslav Zakharov, Konstantin Gribanov, and Nikita Rokotyan thank the Russian Science Foundation for support of their research under the framework of grant 18-11-00024

    Developing a western Siberia reference site for tropospheric water vapour isotopologue observations obtained by different techniques (in situ and remote sensing)

    Get PDF
    Water stable isotopologues provide integrated tracers of the atmospheric water cycle, affected by changes in air mass origin, non-convective and convective processes and continental recycling. Novel remote sensing and in situ measuring techniques have recently offered opportunities for monitoring atmospheric water vapour isotopic composition. Recently developed infrared laser spectrometers allow for continuous in situ measurements of surface water vapour &delta;D<sub>v</sub> and &delta;<sup>18</sup>O<sub>v</sub>. So far, very few intercomparisons of measurements conducted using different techniques have been achieved at a given location, due to difficulties intrinsic to the comparison of integrated with local measurements. Nudged simulations conducted with high-resolution isotopically enabled general circulation models (GCMs) provide a consistent framework for comparison with the different types of observations. Here, we compare simulations conducted with the ECHAM5-wiso model with two types of water vapour isotopic data obtained during summer 2012 at the forest site of Kourovka, western Siberia: hourly ground-based FTIR total atmospheric columnar &delta;D<sub>v</sub> amounts, and in situ hourly Picarro &delta;D<sub>v</sub> measurements. There is an excellent correlation between observed and predicted &delta;D<sub>v</sub> at surface while the comparison between water column values derived from the model compares well with FTIR estimates

    Verification of H2O lines from the HITRAN database for remote sensing of the water vapour isotopic composition

    No full text
    The quality of the spectroscopic line parameters from the HITRAN Database for remote sensing of the water vapour isotopic composition of the atmosphere is widely discussed. In this research we show that the HITRAN-2008 data for H2O isotopologues in the near infrared spectral range (4000-6400 cm-1) is reasonably good. The HITRAN data was tested with independent calculation (ab initio et al.). For the evaluation we've used two following criteria: a quality of the fitting of atmospheric spectra measured at the Ural Atmospheric Station (UAS, Kourovka) with the high-resolution Fourier-transform infrared spectrometer and an agreement between the retrieved HDO/H2O relative concentration ratios in the atmospheric column and the results of the simulation of the isotopic general circulation model ECHAM5-wiso (validated for Kourovka region). © (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only
    corecore