23 research outputs found
Inverting Adversarially Robust Networks for Image Synthesis
Recent research in adversarially robust classifiers suggests their
representations tend to be aligned with human perception, which makes them
attractive for image synthesis and restoration applications. Despite favorable
empirical results on a few downstream tasks, their advantages are limited to
slow and sensitive optimization-based techniques. Moreover, their use on
generative models remains unexplored. This work proposes the use of robust
representations as a perceptual primitive for feature inversion models, and
show its benefits with respect to standard non-robust image features. We
empirically show that adopting robust representations as an image prior
significantly improves the reconstruction accuracy of CNN-based feature
inversion models. Furthermore, it allows reconstructing images at multiple
scales out-of-the-box. Following these findings, we propose an
encoding-decoding network based on robust representations and show its
advantages for applications such as anomaly detection, style transfer and image
denoising
Making Vision Transformers Truly Shift-Equivariant
For computer vision, Vision Transformers (ViTs) have become one of the go-to
deep net architectures. Despite being inspired by Convolutional Neural Networks
(CNNs), ViTs' output remains sensitive to small spatial shifts in the input,
i.e., not shift invariant. To address this shortcoming, we introduce novel
data-adaptive designs for each of the modules in ViTs, such as tokenization,
self-attention, patch merging, and positional encoding. With our proposed
modules, we achieve true shift-equivariance on four well-established ViTs,
namely, Swin, SwinV2, CvT, and MViTv2. Empirically, we evaluate the proposed
adaptive models on image classification and semantic segmentation tasks. These
models achieve competitive performance across three different datasets while
maintaining 100% shift consistency
SASSL: Enhancing Self-Supervised Learning via Neural Style Transfer
Existing data augmentation in self-supervised learning, while diverse, fails
to preserve the inherent structure of natural images. This results in distorted
augmented samples with compromised semantic information, ultimately impacting
downstream performance. To overcome this, we propose SASSL: Style Augmentations
for Self Supervised Learning, a novel augmentation technique based on Neural
Style Transfer. SASSL decouples semantic and stylistic attributes in images and
applies transformations exclusively to the style while preserving content,
generating diverse samples that better retain semantics. Our technique boosts
top-1 classification accuracy on ImageNet by up to 2 compared to
established self-supervised methods like MoCo, SimCLR, and BYOL, while
achieving superior transfer learning performance across various datasets
Augmentations vs Algorithms: What Works in Self-Supervised Learning
We study the relative effects of data augmentations, pretraining algorithms,
and model architectures in Self-Supervised Learning (SSL). While the recent
literature in this space leaves the impression that the pretraining algorithm
is of critical importance to performance, understanding its effect is
complicated by the difficulty in making objective and direct comparisons
between methods. We propose a new framework which unifies many seemingly
disparate SSL methods into a single shared template. Using this framework, we
identify aspects in which methods differ and observe that in addition to
changing the pretraining algorithm, many works also use new data augmentations
or more powerful model architectures. We compare several popular SSL methods
using our framework and find that many algorithmic additions, such as
prediction networks or new losses, have a minor impact on downstream task
performance (often less than ), while enhanced augmentation techniques
offer more significant performance improvements (). Our findings
challenge the premise that SSL is being driven primarily by algorithmic
improvements, and suggest instead a bitter lesson for SSL: that augmentation
diversity and data / model scale are more critical contributors to recent
advances in self-supervised learning.Comment: 18 pages, 1 figur
In COVID-19 Health Messaging, Loss Framing Increases Anxiety with Little-to-No Concomitant Benefits: Experimental Evidence from 84 Countries
The COVID-19 pandemic (and its aftermath) highlights a critical need to communicate health information effectively to the global public. Given that subtle differences in information framing can have meaningful effects on behavior, behavioral science research highlights a pressing question: Is it more effective to frame COVID-19 health messages in terms of potential losses (e.g., "If you do not practice these steps, you can endanger yourself and others") or potential gains (e.g., "If you practice these steps, you can protect yourself and others")? Collecting data in 48 languages from 15,929 participants in 84 countries, we experimentally tested the effects of message framing on COVID-19-related judgments, intentions, and feelings. Loss- (vs. gain-) framed messages increased self-reported anxiety among participants cross-nationally with little-to-no impact on policy attitudes, behavioral intentions, or information seeking relevant to pandemic risks. These results were consistent across 84 countries, three variations of the message framing wording, and 560 data processing and analytic choices. Thus, results provide an empirical answer to a global communication question and highlight the emotional toll of loss-framed messages. Critically, this work demonstrates the importance of considering unintended affective consequences when evaluating nudge-style interventions
A global experiment on motivating social distancing during the COVID-19 pandemic
Finding communication strategies that effectively motivate social distancing continues to be a global public health priority during the COVID-19 pandemic. This cross-country, preregistered experiment (n = 25,718 from 89 countries) tested hypotheses concerning generalizable positive and negative outcomes of social distancing messages that promoted personal agency and reflective choices (i.e., an autonomy-supportive message) or were restrictive and shaming (i.e., a controlling message) compared with no message at all. Results partially supported experimental hypotheses in that the controlling message increased controlled motivation (a poorly internalized form of motivation relying on shame, guilt, and fear of social consequences) relative to no message. On the other hand, the autonomy-supportive message lowered feelings of defiance compared with the controlling message, but the controlling message did not differ from receiving no message at all. Unexpectedly, messages did not influence autonomous motivation (a highly internalized form of motivation relying on one’s core values) or behavioral intentions. Results supported hypothesized associations between people’s existing autonomous and controlled motivations and self-reported behavioral intentions to engage in social distancing. Controlled motivation was associated with more defiance and less long-term behavioral intention to engage in social distancing, whereas autonomous motivation was associated with less defiance and more short- and long-term intentions to social distance. Overall, this work highlights the potential harm of using shaming and pressuring language in public health communication, with implications for the current and future global health challenges
A global experiment on motivating social distancing during the COVID-19 pandemic
Finding communication strategies that effectively motivate social distancing continues to be a global public health priority during the COVID-19 pandemic. This cross-country, preregistered experiment (n = 25,718 from 89 countries) tested hypotheses concerning generalizable positive and negative outcomes of social distancing messages that promoted personal agency and reflective choices (i.e., an autonomy-supportive message) or were restrictive and shaming (i.e. a controlling message) compared to no message at all. Results partially supported experimental hypotheses in that the controlling message increased controlled motivation (a poorly-internalized form of motivation relying on shame, guilt, and fear of social consequences) relative to no message. On the other hand, the autonomy-supportive message lowered feelings of defiance compared to the controlling message, but the controlling message did not differ from receiving no message at all. Unexpectedly, messages did not influence autonomous motivation (a highly-internalized form of motivation relying on one’s core values) or behavioral intentions. Results supported hypothesized associations between people’s existing autonomous and controlled motivations and self-reported behavioral intentions to engage in social distancing: Controlled motivation was associated with more defiance and less long-term behavioral intentions to engage in social distancing, whereas autonomous motivation was associated with less defiance and more short- and long-term intentions to social distance. Overall, this work highlights the potential harm of using shaming and pressuring language in public health communication, with implications for the current and future global health challenges
Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries
Abstract
Background
Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres.
Methods
This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries.
Results
In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia.
Conclusion
This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries
PSACR: The Psychological Science Accelerator's COVID-19 Rapid-Response Dataset
In response to the COVID-19 pandemic, the Psychological Science Accelerator coordinated three large-scale psychological studies to examine the effects of loss-gain framing, cognitive reappraisals, and autonomy framing manipulations on behavioral intentions and affective measures. The data collected (April to October 2020) included specific measures for each experimental study, a general questionnaire examining health prevention behaviors and COVID-19 experience, geographical and cultural context characterization, and demographic information for each participant. Each participant started the study with the same general questions and then was randomized to complete either one longer experiment or two shorter experiments. Data were provided by 73,223 participants with varying completion rates. Participants completed the survey from 111 geopolitical regions in 44 unique languages/dialects. The anonymized dataset described here is provided in both raw and processed formats to facilitate re-use and further analyses. The dataset offers secondary analytic opportunities to explore coping, framing, and self-determination across a diverse, global sample obtained at the onset of the COVID-19 pandemic, which can be merged with other time-sampled or geographic data
In COVID-19 health messaging, loss framing increases anxiety with little-to-no concomitant benefits: Experimental evidence from 84 countries
The COVID-19 pandemic (and its aftermath) highlights a critical need to communicate health information effectively to the global public. Given that subtle differences in information framing can have meaningful effects on behavior, behavioral science research highlights a pressing question: Is it more effective to frame COVID-19 health messages in terms of potential losses (e.g., “If you do not practice these steps, you can endanger yourself and others”) or potential gains (e.g., “If you practice these steps, you can protect yourself and others”)? Collecting data in 48 languages from 15,929 participants in 84 countries, we experimentally tested the effects of message framing on COVID-19-related judgments, intentions, and feelings. Loss- (vs. gain-) framed messages increased self-reported anxiety among participants cross-nationally with little-to-no impact on policy attitudes, behavioral intentions, or information seeking relevant to pandemic risks. These results were consistent across 84 countries, three variations of the message framing wording, and 560 data processing and analytic choices. Thus, results provide an empirical answer to a global communication question and highlight the emotional toll of loss-framed messages. Critically, this work demonstrates the importance of considering unintended affective consequences when evaluating nudge-style interventions