586 research outputs found
Integration of Action and Language Knowledge: A Roadmap for Developmental Robotics
“This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder." “Copyright IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.”This position paper proposes that the study of embodied cognitive agents, such as humanoid robots, can advance our understanding of the cognitive development of complex sensorimotor, linguistic, and social learning skills. This in turn will benefit the design of cognitive robots capable of learning to handle and manipulate objects and tools autonomously, to cooperate and communicate with other robots and humans, and to adapt their abilities to changing internal, environmental, and social conditions. Four key areas of research challenges are discussed, specifically for the issues related to the understanding of: 1) how agents learn and represent compositional actions; 2) how agents learn and represent compositional lexica; 3) the dynamics of social interaction and learning; and 4) how compositional action and language representations are integrated to bootstrap the cognitive system. The review of specific issues and progress in these areas is then translated into a practical roadmap based on a series of milestones. These milestones provide a possible set of cognitive robotics goals and test scenarios, thus acting as a research roadmap for future work on cognitive developmental robotics.Peer reviewe
Ab-initio calculation of the electronic and optical excitations in polythiophene: effects of intra- and interchain screening
We present an calculation of the electronic and optical excitations of an
isolated polythiophene chain as well as of bulk polythiophene. We use the GW
approximation for the electronic self-energy and include excitonic effects by
solving the electron-hole Bethe-Salpeter equation. The inclusion of interchain
screening in the case of bulk polythiophene drastically reduces both the
quasi-particle band gap and the exciton binding energies, but the optical gap
is hardly affected. This finding is relevant for conjugated polymers in
general.Comment: 4 pages, 1 figur
Molecular geometry optimization with a genetic algorithm
We present a method for reliably determining the lowest energy structure of
an atomic cluster in an arbitrary model potential. The method is based on a
genetic algorithm, which operates on a population of candidate structures to
produce new candidates with lower energies. Our method dramatically outperforms
simulated annealing, which we demonstrate by applying the genetic algorithm to
a tight-binding model potential for carbon. With this potential, the algorithm
efficiently finds fullerene cluster structures up to starting
from random atomic coordinates.Comment: 4 pages REVTeX 3.0 plus 3 postscript figures; to appear in Physical
Review Letters. Additional information available under "genetic algorithms"
at http://www.public.iastate.edu/~deaven
Exchange and Correlation Kernels at the Resonance Frequency -- Implications for Excitation Energies in Density-Functional Theory
Specific matrix elements of exchange and correlation kernels in
time-dependent density-functional theory are computed. The knowledge of these
matrix elements not only constraints approximate time-dependent functionals,
but also allows to link different practical approaches to excited states,
either based on density-functional theory, or on many-body perturbation theory,
despite the approximations that have been performed to derive them.Comment: Submitted to Phys. Rev. Lett. (February 4, 1999). Other related
publications can be found at http://www.fhi-berlin.mpg.de/th/paper.htm
Diagrammatic Quantum Monte Carlo for Two-Body Problem: Exciton
We present a novel method for precise numerical solution of the irreducible
two-body problem and apply it to excitons in solids. The approach is based on
the Monte Carlo simulation of the two-body Green function specified by
Feynman's diagrammatic expansion. Our method does not rely on the specific form
of the electron and hole dispersion laws and is valid for any attractive
electron-hole potential. We establish limits of validity of the Wannier (large
radius) and Frenkel (small radius) approximations, present accurate data for
the intermediate radius excitons, and give evidence for the charge transfer
nature of the monopolar exciton in mixed valence materials.Comment: 4 pages, 5 figure
Anomalous relaxations and chemical trends at III-V nitride non-polar surfaces
Relaxations at nonpolar surfaces of III-V compounds result from a competition
between dehybridization and charge transfer. First principles calculations for
the (110) and (100) faces of zincblende and wurtzite AlN, GaN and InN
reveal an anomalous behavior as compared with ordinary III-V semiconductors.
Additional calculations for GaAs and ZnO suggest close analogies with the
latter. We interpret our results in terms of the larger ionicity (charge
asymmetry) and bonding strength (cohesive energy) in the nitrides with respect
to other III-V compounds, both essentially due to the strong valence potential
and absence of core states in the lighter anion. The same interpretation
applies to Zn II-VI compounds.Comment: RevTeX 7 pages, 8 figures included; also available at
http://kalix.dsf.unica.it/preprints/; improved after revie
X-ray Absorption Near-Edge Structure calculations with pseudopotentials. Application to K-edge in diamond and alpha-quartz
We present a reciprocal-space pseudopotential scheme for calculating X-ray
absorption near-edge structure (XANES) spectra. The scheme incorporates a
recursive method to compute absorption cross section as a continued fraction.
The continued fraction formulation of absorption is advantageous in that it
permits the treatment of core-hole interaction through large supercells
(hundreds of atoms). The method is compared with recently developed
Bethe-Salpeter approach. The method is applied to the carbon K-edge in diamond
and to the silicon and oxygen K-edges in alpha-quartz for which polarized XANES
spectra were measured. Core-hole effects are investigated by varying the size
of the supercell, thus leading to information similar to that obtained from
cluster size analysis usually performed within multiple scattering
calculations.Comment: 11 pages, 4 figure
Density-functional-based predictions of Raman and IR spectra for small Si clusters
We have used a density-functional-based approach to study the response of silicon clusters to applied electric fields. For the dynamical response, we have calculated the Raman activities and infrared (IR) intensities for all of the vibrational modes of several clusters (SiN with N=3-8, 10, 13, 20, and 21) using the local density approximation (LDA). For the smaller clusters (N=3-8) our results are in good agreement with previous quantum-chemical calculations and experimental measurements, establishing that LDA-based IR and Raman data can be used in conjunction with measured spectra to determine the structure of clusters observed in experiment. To illustrate the potential of the method for larger clusters, we present calculated IR and Raman data for two low-energy isomers of Si10 and for the lowest-energy structure of Si13 found to date. For the static response, we compare our calculated polarizabilities for N=10, 13, 20, and 21 to recent experimental measurements. The calculated results are in rough agreement with experiment, but show less variation with cluster size than the measurements. Taken together, our results show that LDA calculations can offer a powerful means for establishing the structures of experimentally fabricated clusters and nanoscale systems
Performance of A1C for the Classification and Prediction of Diabetes
OBJECTIVE Although A1C is now recommended to diagnose diabetes, its test performance for diagnosis and prognosis is uncertain. Our objective was to assess the test performance of A1C against single and repeat glucose measurements for diagnosis of prevalent diabetes and for prediction of incident diabetes. RESEARCH DESIGN AND METHODS We conducted population-based analyses of 12,485 participants in the Atherosclerosis Risk in Communities (ARIC) study and a subpopulation of 691 participants in the Third National Health and Nutrition Examination Survey (NHANES III) with repeat test results. RESULTS Against a single fasting glucose ≥126 mg/dl, the sensitivity and specificity of A1C ≥6.5% for detection of prevalent diabetes were 47 and 98%, respectively (area under the curve 0.892). Against repeated fasting glucose (3 years apart) ≥126 mg/dl, sensitivity improved to 67% and specificity remained high (97%) (AUC 0.936). Similar results were obtained in NHANES III against repeated fasting glucose 2 weeks apart. The accuracy of A1C was consistent across age, BMI, and race groups. For individuals with fasting glucose ≥126 mg/dl and A1C ≥6.5% at baseline, the 10-year risk of diagnosed diabetes was 88% compared with 55% among those individuals with fasting glucose ≥126 mg/dl and A1C 5.7–<6.5%. CONCLUSIONS A1C performs well as a diagnostic tool when diabetes definitions that most closely resemble those used in clinical practice are used as the “gold standard.” The high risk of diabetes among individuals with both elevated fasting glucose and A1C suggests a dual role for fasting glucose and A1C for prediction of diabetes. Although A1C is now recommended for the diagnosis of diabetes (1,2), its precise test performance is uncertain. The lack of a single, clear “gold standard” poses a challenge for determining the performance of A1C. Previous diagnostic studies of A1C have relied exclusively on a single elevated fasting or 2-h glucose values as gold standards (3–5). However, because glucose determinations are inherently more variable than A1C (6), these convenient gold standards are likely to reduce the apparent accuracy of A1C as a diagnostic test. A stronger gold standard would rely on repeated glucose determinations on different days (2), i.e., the recommended approach to diagnosis of diabetes in clinical practice. Alternatively, A1C and fasting glucose can be compared head-to-head against the subsequent development of clinically diagnosed diabetes as the gold standard. We hypothesized that 1) A1C would perform well as a diagnostic and prognostic test for diabetes across its full range and at the American Diabetes Association–recommended threshold of 6.5% and 2) that its performance would be best when judged against stronger, most clinically relevant gold standards
Quantum transport through STM-lifted single PTCDA molecules
Using a scanning tunneling microscope we have measured the quantum
conductance through a PTCDA molecule for different configurations of the
tip-molecule-surface junction. A peculiar conductance resonance arises at the
Fermi level for certain tip to surface distances. We have relaxed the molecular
junction coordinates and calculated transport by means of the Landauer/Keldysh
approach. The zero bias transmission calculated for fixed tip positions in
lateral dimensions but different tip substrate distances show a clear shift and
sharpening of the molecular chemisorption level on increasing the STM-surface
distance, in agreement with experiment.Comment: accepted for publication in Applied Physics
- …