We present a novel method for precise numerical solution of the irreducible
two-body problem and apply it to excitons in solids. The approach is based on
the Monte Carlo simulation of the two-body Green function specified by
Feynman's diagrammatic expansion. Our method does not rely on the specific form
of the electron and hole dispersion laws and is valid for any attractive
electron-hole potential. We establish limits of validity of the Wannier (large
radius) and Frenkel (small radius) approximations, present accurate data for
the intermediate radius excitons, and give evidence for the charge transfer
nature of the monopolar exciton in mixed valence materials.Comment: 4 pages, 5 figure