354 research outputs found

    Spin-phonon coupling effects in transition-metal perovskites:a DFT+UU and hybrid-functional study

    Full text link
    Spin-phonon coupling effects, as reflected in phonon frequency shifts between ferromagnetic (FM) and G-type antiferromagnetic (AFM) configurations in cubic CaMnO3_3, SrMnO3_3, BaMnO3_3, LaCrO3_3, LaFeO3_3 and La2_2(CrFe)O6_6, are investigated using density-functional methods. The calculations are carried out both with a hybrid-functional (HSE) approach and with a DFT+UU approach using a UU that has been fitted to HSE calculations. The phonon frequency shifts obtained in going from the FM to the AFM spin configuration agree well with those computed directly from the more accurate HSE approach, but are obtained with much less computational effort. We find that in the AAMnO3_3 materials class with AA=Ca, Sr, and Ba, this frequency shift decreases as the A cation radius increases for the Γ\Gamma phonons, while it increases for R-point phonons. In LaMMO3_3 with MM=Cr, Fe, and Cr/Fe, the phonon frequencies at Γ\Gamma decrease as the spin order changes from AFM to FM for LaCrO3_3 and LaFeO3_3, but they increase for the double perovskite La2_2(CrFe)O6_6. We discuss these results and the prospects for bulk and superlattice forms of these materials to be useful as multiferroics.Comment: 13 pages, 7 figures, 9 table

    Placing objects in context via inpainting for out-of-distribution segmentation

    Get PDF
    When deploying a semantic segmentation model into the real world, it will inevitably be confronted with semantic classes unseen during training. Thus, to safely deploy such systems, it is crucial to accurately evaluate and improve their anomaly segmentation capabilities. However, acquiring and labelling semantic segmentation data is expensive and unanticipated conditions are long-tail and potentially hazardous. Indeed, existing anomaly segmentation datasets capture a limited number of anomalies, lack realism or have strong domain shifts. In this paper, we propose the Placing Objects in Context (POC) pipeline to realistically add any object into any image via diffusion models. POC can be used to easily extend any dataset with an arbitrary number of objects. In our experiments, we present different anomaly segmentation datasets based on POC-generated data and show that POC can improve the performance of recent state-of-the-art anomaly fine-tuning methods in several standardized benchmarks. POC is also effective to learn new classes. For example, we use it to edit Cityscapes samples by adding a subset of Pascal classes and show that models trained on such data achieve comparable performance to the Pascal-trained baseline. This corroborates the low sim-to-real gap of models trained on POC-generated images

    The Puzzling Mutual Orbit of the Binary Trojan Asteroid (624) Hektor

    Full text link
    Asteroids with satellites are natural laboratories to constrain the formation and evolution of our solar system. The binary Trojan asteroid (624) Hektor is the only known Trojan asteroid to possess a small satellite. Based on W.M. Keck adaptive optics observations, we found a unique and stable orbital solution, which is uncommon in comparison to the orbits of other large multiple asteroid systems studied so far. From lightcurve observations recorded since 1957, we showed that because the large Req=125-km primary may be made of two joint lobes, the moon could be ejecta of the low-velocity encounter, which formed the system. The inferred density of Hektor's system is comparable to the L5 Trojan doublet (617) Patroclus but due to their difference in physical properties and in reflectance spectra, both captured Trojan asteroids could have a different composition and origin.Comment: 13 pages, 3 figures, 2 table

    Study of molecular spin-crossover complex Fe(phen)2(NCS)2 thin films

    Full text link
    We report on the growth by evaporation under high vacuum of high-quality thin films of Fe(phen)2(NCS)2 (phen=1,10-phenanthroline) that maintain the expected electronic structure down to a thickness of 10 nm and that exhibit a temperature-driven spin transition. We have investigated the current-voltage characteristics of a device based on such films. From the space charge-limited current regime, we deduce a mobility of 6.5x10-6 cm2/V?s that is similar to the low-range mobility measured on the widely studied tris(8-hydroxyquinoline)aluminium organic semiconductor. This work paves the way for multifunctional molecular devices based on spin-crossover complexes

    A Hot Gap Around Jupiter's Orbit in the Solar Nebula

    Full text link
    The Sun was an order of magnitude more luminous during the first few hundred thousand years of its existence, due in part to the gravitational energy released by material accreting from the Solar nebula. If Jupiter was already near its present mass, the planet's tides opened an optically-thin gap in the nebula. We show using Monte Carlo radiative transfer calculations that sunlight absorbed by the nebula and re-radiated into the gap raised temperatures well above the sublimation threshold for water ice, with potentially drastic consequences for the icy bodies in Jupiter's feeding zone. Bodies up to a meter in size were vaporized within a single orbit if the planet was near its present location during this early epoch. Dust particles lost their ice mantles, and planetesimals were partially to fully devolatilized, depending on their size. Scenarios in which Jupiter formed promptly, such as those involving a gravitational instability of the massive early nebula, must cope with the high temperatures. Enriching Jupiter in the noble gases through delivery trapped in clathrate hydrates will be more difficult, but might be achieved by either forming the planet much further from the star, or capturing planetesimals at later epochs. The hot gap resulting from an early origin for Jupiter also would affect the surface compositions of any primordial Trojan asteroids.Comment: 25 pages, 10 figures. ApJ in press. Discussion of Jupiter's volatile enrichment revised in sec. 4.

    NASA Planetary Mission Concept Study: Assessing: Dwarf Planet Ceres' past and Present Habitability Potential

    Get PDF
    The Dawn mission revolutionized our understanding of Ceres during the same decade that has also witnessed the rise of ocean worlds as a research and exploration focus. We will report progress on the Planetary Mission Concept Study (PMCS) on the future exploration of Ceres under the New Frontiers or Flagship program that was selected for NASA funding in October 2019. At the time this writing, the study was just kicked off, hence this abstract reports the study plan as presented in the proposal

    Tunable synthesis of Prussian Blue in exponentially growing polyelectrolyte multilayer films.

    Get PDF
    Polyelectrolyte multilayer (PEM) films have become very popular for surface functionalization and the design of functional architectures such as hollow polyelectrolyte capsules. It is known that properties such as permeability to small ionic solutes are strongly dependent on the buildup regime of the PEM films. This permeability can be modified by tuning the ionization degree of the polycations or polyanions, provided the film is made from weak polyelectrolytes. In most previous investigations, this was achieved by playing on the solution pH either during the film buildup or by a postbuildup pH modification. Herein we investigate the functionalization of poly(allylamine hydrochloride)/poly(glutamic acid) (PAH/PGA) multilayers by ferrocyanide and Prussian Blue (PB). We demonstrate that dynamic exchange processes between the film and polyelectrolyte solutions containing one of the component polyelectrolyte allow one to modify its Donnan potential and, as a consequence, the amount of ferrocyanide anions able to be retained in the PAH/PGA film. This ability of the film to be a tunable reservoir of ferrocyanide anions is then used to produce a composite film containing PB particles obtained by a single precipitation reaction with a solution containing Fe(3+) cations in contact with the film. The presence of PB in the PEM films then provides magnetic as well as electrochemical properties to the whole architecture.journal article2009 Dec 15importe

    Spintronic magnetic anisotropy

    Full text link
    An attractive feature of magnetic adatoms and molecules for nanoscale applications is their superparamagnetism, the preferred alignment of their spin along an easy axis preventing undesired spin reversal. The underlying magnetic anisotropy barrier --a quadrupolar energy splitting-- is internally generated by spin-orbit interaction and can nowadays be probed by electronic transport. Here we predict that in a much broader class of quantum-dot systems with spin larger than one-half, superparamagnetism may arise without spin-orbit interaction: by attaching ferromagnets a spintronic exchange field of quadrupolar nature is generated locally. It can be observed in conductance measurements and surprisingly leads to enhanced spin filtering even in a state with zero average spin. Analogously to the spintronic dipolar exchange field, responsible for a local spin torque, the effect is susceptible to electric control and increases with tunnel coupling as well as with spin polarization.Comment: 6 pages with 4 figures + 26 pages of Supplementary Informatio
    • …
    corecore