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When deploying a semantic segmentation model into the real world, it will inevitably be confronted
with semantic classes unseen during training. Thus, to safely deploy such systems, it is crucial to
accurately evaluate and improve their anomaly segmentation capabilities. However, acquiring and
labelling semantic segmentation data is expensive and unanticipated conditions are long-tail and
potentially hazardous. Indeed, existing anomaly segmentation datasets capture a limited number of
anomalies, lack realism or have strong domain shifts. In this paper, we propose the Placing Objects
in Context (POC) pipeline to realistically add any object into any image via diffusion models. POC
can be used to easily extend any dataset with an arbitrary number of objects. In our experiments,
we present different anomaly segmentation datasets based on POC-generated data and show that
POC can improve the performance of recent state-of-the-art anomaly fine-tuning methods in several
standardized benchmarks. POC is also effective to learn new classes. For example, we use it to edit
Cityscapes samples by adding a subset of Pascal classes and show that models trained on such data
achieve comparable performance to the Pascal-trained baseline. This corroborates the low sim-to-real
gap of models trained on POC-generated images.

1. Introduction
When autonomous agents such as robots or self-
driving cars are deployed, they are exposed to the
open nature of the real world. Inevitably, they will
need to process visual conditions that were not an-
ticipated at training. Among other factors, the pres-
ence of unseen objects in the scene poses a partic-
ularly dangerous safety hazard. For example, con-
sider an unknown wild animal crossing the street and
processed by the model as “road”. To tackle this is-
sue, it is important to distinguish out-of-distribution
(OOD) categories—i.e., novel objects unseen during
training—from the in-distribution (ID) ones. In the
context of semantic image segmentation, this task is
often referred to as anomaly segmentation.

Although several methods have been proposed that
allow segmenting anomalies [2,13,17,26,31,35], ac-
curately evaluating the performance of such methods
is a challenge in itself. Given a model trained on a
particular dataset, the aim is to test its ability to pro-
cess OOD categories in conditions that resemble the
training domain. For example, to test a model trained
for semantic segmentation of urban scenes, the ideal
test set would be constituted by images showing OOD
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Figure 1: Left: Images from our POC-generated datasets.
From top to bottom, inserted anomalies are “sheep",
“dumped furniture" and “carton box". Right: AUPRC on
different anomaly segmentation datasets. We evaluate
RbA [42] prior to fine-tuning, and after fine-tuning with
COCO objects or POC-generated images. Fine-tuning with
POC improves results on several benchmarks.

categories within an urban environment similar to
the training one. Yet, the distribution of OOD objects
is long-tail and it is inefficient, or even hazardous, to
acquire and label images with arbitrary categories.

Previous approaches to generate anomaly segmen-
tation datasets can be grouped into three families:
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FS Static

Street Haz.FS L&F

SMIYC O.

SMIYC A.RoadAnomaly

Figure 2: Samples from previous OOD datasets to vi-
sually support Tab. 1: FS Static has unrealistic OOD ob-
jects while RoadAnomaly and SMIYC datasets have strong
domain shifts from Cityscapes. FS L&F (which manually
inserts OOD objects) and StreetHazards (full simulation)
have large set-up costs.

Stitching and blendingOOD objects from other sources
into images from the original dataset [3]; Collect-
ing images from driving scenes and annotating OOD
objects [5, 34, 45]; Full simulation of urban scenes
with anomalies [23]. Stitching and blending is rel-
atively inexpensive if OOD objects are segmented
elsewhere, but it often leads to unrealistic insertions
(e.g., object’s size and contrast). Collected images con-
tain real anomalies, but are expensive to acquire and
have a significant distribution shift with respect to
the original dataset (it is not easy to find or replicate
images following the original setup). Full simulation
allows for perfectly blended objects but bears a high
set up cost and results in a severe drift from the train
distribution. See Fig. 2 for illustrative examples.

Ideally, methods to generate anomaly segmenta-
tion datasets should satisfy four main desiderata: i)
Minimal domain shift with respect to the training set—
since large domain shifts may lead to underestimating
anomaly segmentation capabilities; ii) Generating re-
alistic images; iii) Allowing for a dynamic generation
of new images with arbitrary OOD objects; iv) Bearing
low set-up costs.

This motivates us to introduce the Placing Objects
in Context pipeline (POC), which enables practition-
ers to generate anomaly segmentation test sets by
realistically inserting any (OOD) object into any im-
age on the fly. See a comparison along our desiderata
between approaches followed to generate previous
benchmarks and the proposed POC in Tab. 1.

In order to insert new objects realistically, we con-
trol the location of the added object and only apply
local changes to preserve the overall scene semantics.
We resort on open-vocabulary segmentation [18] to
select valid regions where to place the object, e.g., “the

No domain OOD LowDataset shift realism Dynamic cost
FS Static [3] ✓ ✘ (✓) (✓)
FS L&F [45] (✓) ✓ ✘ ✘

SMIYC O. [5] ✘ ✓ ✘ ✘

SMIYC A. [5] ✘ ✓ ✘ ✘

RoadAnom. [34] ✘ ✓ ✘ ✘

StreetHaz. [23] ✘ (✓) (✓) ✘

POC (ours) ✓ (✓) ✓ ✓

Table 1: Comparison of anomaly test sets. We qualita-
tively compare datasets on four main axes. We score them
into good (✓), medium ((✓)) and bad (✘). Further discus-
sion in Sec. 2.

road". We then feed the selected region to an inpaint-
ing model [48] with a conditioning prompt, e.g., “a
cat". After inpainting, we apply again the segmen-
tation model to the modified area to automatically
annotate the added object and detect generation fail-
ures, i.e., when the object was not properly generated.

In our experiments, we show that fine-tuning on
POC-generated data can significantly improve the per-
formance of state-of-the-art anomaly segmentation
methods—outperforming models fine-tuned via the
standard practice of stitching COCO objects. We also
present three POC-generated evaluation sets based on
Cityscapes and two other self-driving datasets, and
benchmark different anomaly segmentation methods
on them (see Fig. 1 for a first glimpse of results).

Finally, since POC can add arbitrary objects, we
show it can be used to learn new classes. For in-
stance, augmenting Cityscapes images with animal
classes leads to 93.14 mIoU on Pascal’s test set (con-
sidering the same classes) without seeing any real
animal, while directly training on Pascal yields 94.75—
namely, models trained on POC-edited images yield
a rather small sim-to-real gap.

We open-sourced the code to reproduce our exper-
iments at https://github.com/naver/poc.

2. Related work

Anomaly segmentation methods. Initial works re-
lied on approximating uncertainty via softmax prob-
abilities [22,32], model ensembles [29] or dropout
[16, 41]. Yet, models tend to be overconfident, re-
sulting in high confidence also for OOD samples [19,
25,43]. Alternative confidence measures have been

2
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Figure 3: Illustratation of our POC pipeline and applications. Our pipeline is built on top of inpainting and open-
vocabulary segmentation models to insert arbitrary objects into images realistically. The modified image and mask can be
used for different tasks.

proposed that either rely on logits [9,23,26,37] or
density estimators [30]. Another body of works re-
construct images with generative models and detect
anomalies as discrepancies between original images
and their reconstructions [20,34,35,58]. Currently,
the most promising methods use OOD data to fine-
tune the models [6,17,56]. In particular, they crop
OOD objects from COCO [33] and stitch them in
Cityscapes images. In this work, we build on three
state-of-the-art OOD fine-tuning methods [38,42,46]
and combine them with POC.

Anomaly segmentation datasets. In Tab. 1 we com-
pare existing anomaly segmentation datasets across
four axes (Domain shift, OOD realism, Dynamism and
Set up cost) while in Fig. 2 we show corresponding
sample images.

Fishyscapes Static [3] randomly stitches OOD ob-
jects from Pascal [15] to Cityscapes images, thus,
there is no domain shift, but stitched OOD objects lack
realism. If OOD object images andmasks are available,
datasets can be generated dynamically. However, if
new objects need to be used, they need to be acquired
from additional datasets or from the web with mild
set-up costs.

At the other end of the spectrum, RoadAnomaly
[34] and Segment-me-if-you-can (SMIYC) datasets
[5] download real images with anomalies from the
web. This ensures OOD realism, but often leads to
a large domain shift. Moreover, manual labelling of
OOD objects has a significant set-up cost and is not
dynamic, i.e., new images would need to be acquired
and labelled to generate new samples. Lost & Found
[45] mimicked the Cityscapes set-up to reduce do-
main shift, but planted OOD objects artificially, which

leads to low variability and is even more difficult to
scale.

Street Hazards [23] presents a fully simulated
dataset. This allows for dynamic generation of im-
ages while the simulation engine inserts OOD objects
realistically in terms of lighting. However, the pose
and size of the object are pseudo-random, which is
not always realistic and there is a strong domain shift
from simulation to real images. Moreover, accurate
3D models for all objects are required which has a
significant set-up cost and is hard to scale.

Our proposed pipeline is plug & play and can add
objects into images with no set-up costs. Since it is
built on top of open-vocabulary models, it can dynam-
ically insert any object by changing the text prompts.
We observe qualitatively and quantitatively that our
pipeline leads to more OOD realism and applying in-
painting also avoids domain shift.

Generative models. Diffusion models [53] have led
to unprecedented quality in image generation [12,
24,50,54]. In particular, text-to-image models can
receive a text prompt to easily condition the image
generation process [44,47,48,51]. Besides image gen-
eration, there has been a growing interest in image
editing. Particularly relevant to our goal are works
that perform image inpainting, i.e.,modifying only
masked parts of an image [1,47,48]. General-purpose
editing models that can edit images based on text
prompts [4,40] are also relevant for our goals. In par-
ticular, InstructPix2Pix [4] has recently shown very
realistic results following text instructions, e.g., “make
it look like it was a sunset". However, we found that it
often failed to add new objects to the scene e.g., “add a
dog on the street". A more detailed discussion can be
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found in Appendix C. Rather than training a diffusion
model to edit images end-to-end like InstructPix2Pix,
we build a pipeline on top of Stable Diffusion [48] to
automatically add objects into images.

Similar to us, Du et al. [14] use text-to-image mod-
els to generate OOD images for classification and
Karazija et al. [27] to perform zero-shot semantic
segmentation. While the latter [27] relies on a frozen
feature extractor and focuses on zero-shot segmenta-
tion, we extend an existing dataset with new classes.
Different from the former [14], we target OOD in
segmentation and rather than generating fully OOD
images, we insert OOD objects realistically.

3. Placing Objects in Context (POC)
We now present our proposed pipeline, Placing Ob-
jects in Context (POC). To recap, our desiderata to
generate OOD datasets are i)minimal shift w.r.t. train-
ing set, ii) realism, iii) dynamic generation and iv)
low set-up costs.

3.1. The POC pipeline

Our pipeline is built on top of two open-source models
with permissive licenses: an inpainting model from
Stable Diffusion (SD [48]) and an open-vocabulary
segmentation model (GSAM) [18] based on SAM [28]
and GroundingDINO [36]. In the following, we detail
the four main stages that constitute our pipeline, we
provide a full overview of our pipeline in Fig. 3.

Selecting a region to inpaint. In order to insert
objects realistically, it is important to find suitable
locations for them (i.e., a cat should not be levitating).
We leverage GSAM [18] in order to segment a valid
area to insert the object based on a location prompt
𝑠𝑙, e.g., “the road". Within this valid area, we select a
region 𝑟 with random size and location based on user-
specified limits to increase diversity. In Appendix E we
conduct a human study to assess the gain in realism
obtained by guiding the object location vs. a random
location.

Object inpainting. After selecting 𝑟 we crop a square
around it 𝑥𝑟 and apply SD to obtain 𝑥𝑟. The strong
vision grounding from SD allows us to add objects
more realistically. For instance, we observe that the
inpainting model tends to adjust the size of the object
(e.g., a bird will be much smaller than a garbage bin
for the same region) although there is a tendency

towards filling all the inpainting area. We also observe
that the illumination of the added object changes
based on the image. This is particularly noticeable in
night images from ACDC (see Fig. 1).

Automated annotation. In most downstream ap-
plications, we need the corresponding mask of the
added object. We leverage again the open-vocabulary
GSAM, to get �̃� based on an object prompt 𝑠𝑜. We
also use this step to reject images with generation
failures (e.g., the object was not generated or it was
very unrealistic). However, we observed that applying
GSAM to the full image often led to false positives
and better results were obtained by applying it only
to the inpainted region. Also note that using a model
like GSAM we can provide more accurate labels than
simpler methods like foreground/background seg-
mentation [27] that can not distinguish between a
bicycle and its rider.

Object blending. While SD tends to preserve the
details of the original image, it introduces slight mod-
ifications to the textures (especially fine-grained) and
some noticeable changes, e.g., in lane markings. To
reduce undesired edits, we blend the original image
𝑥 and inpainted one 𝑥 as:

𝑥 := (1 − 𝑚) ⊙ 𝑥 + 𝑚 ⊙ 𝑥

where := indicates an update operation, ⊙ the
element-wise product and 𝑚 = G(�̃�) is the object
mask convolved with a Gaussian kernel. This allows
for a smooth transition between the inpainted object
and the rest of the image, while preserving some re-
alistic local modifications, like shadows or reflections.
We also tried applying an image2image generative
model with an empty prompt after inpainting,
but after conducting a human study we conclude
this does not prevent undesired modifications in
general and often modifies the image beyond the
inpainting region, which negatively impact realism
(see Appendix F). Thus, we keep only the gaussian
blur.

3.2. Generating datasets with POC

Although our pipeline can be used for multiple ap-
plications, we have two main motivations: (i) ex-
tending datasets for anomaly segmentation and (ii)
learning new classes. In both cases we use Cityscapes
as the known classes and, regardless of the number
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of added classes, all POC-datasets have 3× the size
of Cityscapes— i.e., we augment each image three
times with randomly sampled prompts. Note that this
does not lead to any imbalance in terms of fine-tuning
steps, since all training schedules have the same total
amount of iterations.

Generation prompts. In all datasets we follow a sim-
ilar approach. Each object class has an object prompt
𝑠𝑜, or several for diversity (e.g., “car", “suv", “van" all
belong to the Cityscapes class “car"). Then, the in-
painting prompt is built as 𝑠𝑖 = “A good photo of” + 𝑠𝑜.
Given our datasets are all for autonomous driving, we
use as location prompt 𝑠𝑙 = “the road” for all objects
except the class “bird”, which has unconstrained lo-
cation. We found this simple approach to yield good
results without the need for prompt engineering.

Generating OOD test sets. To evaluate anomaly seg-
mentation methods, we generate three new test sets,
namely CS-POC, IDD-POC and ACDC-POC. We start
from the Cityscapes [10], IDD [57], and ACDC[52]
validation sets (which have increasing domain shift
w.r.t. Cityscapes [11]) and use the same list of OOD
objects to augment the images within the validation
set. The rationale behind the creation of three sets is
to disentangle the difficulty in detecting certain OOD
objects (that might be harder to detect as OOD) vs. the
difficulty caused by a large distribution shift on the ID
classes (while the OOD classes remain the same). A
second goal is to showcase that POC can be used with
different datasets seamlessly (see additional exam-
ples for different environment prompts in Appendix D.
These datasets contain 25 different OOD classes arbi-
trarily chosen to be plausible anomalies in an urban
environment (e.g., wild animals, garbage bags and
bins, etc. ). Given our OOD objects are all synthetic,
following [3] we also add ID objects (e.g., cars or
persons) to ensure the model is not “simply” perform-
ing synth vs. real discrimination. A full list of all the
objects can be found in Appendix A.

Generating OOD fine-tuning sets. Recent work on
OOD fine-tuning have used COCO classes not present
in Cityscapes to extract OOD objects. For consis-
tency, we generate POC-coco using the names of COCO
classes used in previous works as prompts to inpaint
them with POC (as opposed to cropping and stitch-
ing from COCO images). Additionally, we generate
another fine-tuning dataset, POC-alt, with the same
25 OOD classes used in our evaluation sets to see

the dependence of the fine-tuning methods on the
number and type of OOD objects.

Extending datasets to learn new classes. Given
a dataset D with set of classes K, we consider the
task of generating an extended dataset D̃ with set of
classes K̃ = K ∪U such that it can be used to train
models that perform well on D as well as learning
the additional set of classes U. Following the au-
tonomous driving use-case, we extend the Cityscapes
dataset with the 6 animal classes present in the PAS-
CAL dataset (which we use to evaluate). Our moti-
vation is that wild animals cause accidents [49] and
being able to segment them individually (not just as
anomalies) might help prevent collisions. We call this
dataset POC-A, however, we also add the same classes
on the CS validation set which we call CS extended.
Additionally, we generate another dataset where we
inpaint the animal classes but also CS classes present
in PASCAL to study the generalization capabilities.

4. POC for anomaly segmentation
We have already discussed that, in order to reliably
evaluate the risk of deploying a model in a certain
scenario, we need test images with minimal distribu-
tion shift w.r.t. the original distribution and realistic
OOD objects. In a similar spirit, we hypothesize that
when fine-tuning models for anomaly segmentation,
more realistic anomalies will lead to better results. To
test this hypothesis, we take three recent methods for
OOD fine-tuning that rely on stitching COCO objects
into CS images, but instead of COCO, we use our POC
pipeline to generate the anomalies for fine-tuning.

4.1. Experimental setting

Anomaly segmentation methods. RPL [38] learns
a module to detect anomalies via contrastive learn-
ing, on top of a segmentation network that is kept
frozen. This allows improving OOD detection with
minimal degradation to the closed-set performance.
Mask2Anomaly (M2A) [46] and RbA [42] are both
based on the novel Mask2Former architecture [8]
which performs segmentation at the mask level,
i.e., by grouping pixels into “masks" and classify-
ing the whole masks into the closed-set categories.
This significantly reduces the pixel-level noise on the
anomaly scores. RbA [42] performs OOD fine-tuning
with a squared hinge loss while M2A [46] also uses
contrastive learning. We use the original code with
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OOD FS Static FS Lost&Found SMIYC Anomaly SMIYC ObstacleMethod data F1* ↑ AuPRC ↑ FPR ↓ F1* ↑ AuPRC ↑ FPR ↓ F1* ↑ AuPRC ↑ FPR ↓ F1* ↑ AuPRC ↑ FPR ↓

No ft. 65.39 60.07 7.41 45.53 36.77 13.87 88.63 92.99 3.94 69.28 73.62 6.91
COCO 82.73 88.35 2.22 70.92 64.46 13.11 90.52 94.69 3.28 89.97 94.76 0.39
POC alt. 82.61 87.40 3.15 74.49 68.84 11.35 92.21 93.78 2.05 90.84 95.34 0.26M2A [46]
POC coco 81.99 87.01 2.12 76.52 72.97 9.21 88.8 92.13 8.35 91.35 96.04 0.13
No ft. 20.99 13.95 38.54 5.40 1.57 66.28 50.19 52.99 39.55 46.02 45.15 3.19
COCO 83.83 89.62 1.23 58.02 58.41 3.22 73.4 78.26 18.14 89.74 94.29 0.34
POC alt. 88.37 94.44 0.71 70.32 74.22 2.67 69.42 78.21 26.89 89.83 93.61 0.88RPL [38]
POC coco 88.54 95.07 0.49 69.45 69.17 1.64 62.65 68.00 46.78 87.76 92.31 0.92

No ft. 58.21 59.15 17.68 63.7 60.95 10.63 86.47 86.89 86.44 92.75 95.88 0.16
COCO 67.04 72.23 3.98 69.72 70.87 8.69 84.71 91.07 5.35 94.85 98.19 0.04
POC alt. 68.31 77.2 3.4 74.05 76.74 5.36 86.48 90.47 4.36 94.92 98.35 0.04RbA [42]
POC coco 68.56 77.58 3.32 76.48 78.87 3.32 85.21 89.4 4.99 94.59 98.39 0.04

OOD RoadAnomaly Cityscapes – POC IDD – POC ACDC – POCMethod data F1* ↑ AuPRC ↑ FPR ↓ F1* ↑ AuPRC ↑ FPR ↓ F1* ↑ AuPRC ↑ FPR ↓ F1* ↑ AuPRC ↑ FPR ↓

No ft. 54.75 55.74 52.15 40.95 35.36 13.05 45.57 42.94 11.96 18.58 10.34 26.74
COCO 77.19 78.89 18.50 88.26 93.88 0.54 80.98 85.54 1.03 70.78 72.83 6.17
POC alt. 81.45 82.29 36.65 91.39 95.81 0.43 82.82 87.74 1.09 74.02 74.45 7.56M2A [46]
POC coco 78.92 77.96 24.61 89.09 94.67 0.37 83.05 89.07 1.26 72.77 72.04 8.38

No ft. 24.4 14.99 70.42 22.74 13.79 44.87 7.95 3.45 61.43 3.31 1.26 79.01
COCO 60.08 59.20 27.14 82.06 88.41 0.71 72.35 78.68 1.76 63.64 65.42 2.56
POC alt. 66.39 69.42 21.68 86.1 93.18 0.48 79.66 85.78 0.97 79.42 85.68 0.78RPL [38]
POC coco 61.38 64.16 21.36 87.58 94.30 0.36 82.8 89.97 0.69 76.0 81.16 1.31

No ft. 72.78 78.4 11.83 73.49 77.89 3.67 65.54 65.05 78.92 24.25 18.65 90.04
COCO 78.54 83.4 8.31 87.17 92.92 0.49 79.22 85.25 1.19 33.45 31.96 11.19
POC alt. 78.32 84.08 8.29 89.34 95.02 0.37 83.69 89.1 0.73 54.99 58.37 8.39RbA [42]
POC coco 77.34 82.95 8.82 90.48 95.83 0.3 83.77 89.09 0.89 57.59 61.14 9.06

Table 2: Anomaly segmentation metrics after OOD finetuning. We use three recent OOD fine-tuning methods and
report results prior to fine-tuning (No ft.), after fine-tuning with COCO objects and using our POC pipeline to inpaint coco
objects (POC coco) or an alternative set of 25 objects (POC alt.) likely to be found on the street. Best and second best
numbers for each method are highlighted in bold and underlined respectively. The best number over all methods is shaded
in gray. Using our pipeline improves performance in most cases. Moreover, fine-tuning with COCO also leads to significant
improvements in our POC eval sets, consistent with previous benchmarks.

default settings for each method and only modify the
fine-tuning dataset.

OOD fine-tuning data. For each method, we consider
different ways of generating the dataset used to fine-
tune the anomaly segmentation modules. First, we
consider a baseline where no fine-tuning occurs (No
ft. in our tables). Then, we consider fine-tuning on
COCO stitching. When we fine-tune using our POC-
generate images, we consider two cases: POC coco
(inpainting the same classes as COCO stitching) and
POC alt. (inpainting alternative classes, more likely
to be found on the street).

Anomaly datasets and metrics. We evaluate on five
commonly used datasets, discussed in Sec. 2, and
on our POC-generated datasets. Following previous
work [6, 38], we compute three different metrics:

CS-POC IDD-POC ACDC-POC FS Static FS L&F RoadAno SMIYC A SMIYC O1.5
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Figure 4: Boxplots of anomaly scores. All datasets have
consistently very high scores for OOD pixels while ID pixels
of datasets with strong distribution shifts also have shifted
scores. Thus, distribution shifts may lead to underestimated
performance.

maximum F1 score over all thresholds (𝐹1∗), Area
under the Precision-Recall Curve (AuPRC) and False
Positive Rate at 95% recall (FPR).
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4.2. Results

POC improves OOD detection. In Tab. 2, we show
fine-tuning with POC coco is remarkably better than
the No ft. baseline despite only using data with syn-
thetic anomalies. Moreover, POC coco also brings
important improvements over COCO fine-tuning in
some settings. For instance, in FS Static (for RPL or
RbA), in SMIYC Obstacle (for M2A or RbA) and in FS
Lost & Found (for all methods). In other settings, it is
competitive with COCO fine-tuning except in SMIYC
Anomaly (for RPL), where we observe a significant
drop. One reason may be that the strong domain shift
in SMIYC Anomaly limits the benefits of using more
realistic data. On the other hand, in FS Lost & Found,
which has the closest setting to Cityscapes and real
OOD objects, we carry the largest improvements.

Robustness to the choice of OOD classes. We
observe that inpainting different OOD classes than
COCO, POC alternative, also leads to strong anomaly
segmentation results, improving over the COCO base-
line in several settings and sometimes surpassing POC
coco. This indicates that fine-tuning methods are
somewhat robust to the choice of OOD classes. Impor-
tantly, the flexibility of the POC pipeline opens the
possibility of studying which classes might be best
depending on the use-case in future work.

Finally, note that the best score of all methods (high-
lighted with gray background) corresponds to one of
the POC fine-tuning datasets in almost all settings.

Performance on POC evalutation sets. As expected,
fine-tuning with our pipeline brings the best results
on our POC eval sets. Yet, we also observe that COCO
fine-tuning leads to notable improvements, similar to
the ones observed in previous datasets. This indicates
that POC datasets accurately reflect anomaly segmen-
tation capabilities and can be used to efficiently build
OOD detection benchmarks. Interestingly, we also ob-
serve that POC-alt does not always outperform POC-
coco despite sharing the same anomaly classes as the
POC test sets. One explanation could be that POC-
coco has more anomaly classes (80 compared to 25
in POC-alt), thus, potentially more diversity.

Domain shifts hinder anomaly segmentation. Con-
sidering our synthetic evaluation datasets, if we move
from POC-CS to POC-IDD and POC-ACDC we observe
a drop in performance in all methods. Since the sets
contain the same anomaly classes, the drop is due
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Figure 5: Anomaly score maps. Per-pixel anomaly scores
on POC-generated images obtained with M2A [46] before
and after fine-tuning with COCO and POC data. COCO and
POC fine-tuning have notable improvements over the No ft.
baseline, e.g., note the garbage bag or matress in second
and third images.

to the domain shift between train and evaluation
rather than hard-to-detect anomalies. Additionally,
in Fig. 4 we show boxplots of the predicted anomaly
scores (higher meaning higher chance of anomaly)
for ID vs.OOD pixels. Interestingly, we observe that
OOD pixels have very high scores independently of
the dataset, while ID scores vary significantly be-
tween datasets. Datasets with strong domain shifts
(i.e., SMIYC Anomaly, RoadAnomaly and POC-ACDC)
carry larger ID anomaly scores. While anomaly seg-
mentation under domain shift might also be an in-
teresting task, we argue that, in practice, agents will
be carefully deployed in restricted areas (e.g., one
city). To accurately evaluate the risk represented by
anomalies, ideally, there should be no domain shift.

Anomaly segmentation maps. In Fig. 5 we show
per-pixel anomaly scores on POC-generated images
computed with Mask2Anomaly prior to fine-tuning
and after fine-tuning either with COCO or POC data.
Aside from the inpainted anomalies (labelled in gray),
we observe that in ACDC (Top) the night sky has a
particularly high score and in IDD (Middle) a pecu-
liar instance of a known class (the all-road car) is
also highlighted, potentially misleading anomaly seg-
mentation. More anomaly score maps can be found
in Appendix I.
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POC Pipeline T2I Full T2I Crop

Figure 6: Training image samples. Text2Image (T2I)
methods often lead to unrealistic objects. Moreover, some-
times T2I outputs are misaligned with caption, e.g., “an
image of a dog" leading to a collage of dog images. More
samples in Appendix H.

5. POC to learn new classes
Besides anomaly segmentation, another natural ap-
plication for our POC pipeline is dataset extension. In
this section we consider extending the dataset in two
directions: adding novel objects to learn new classes
and adding instances of existing classes to improve
generalization.

5.1. Experimental settings

Extended datasets. We use Cityscapes as our base
dataset. Given our autonomous driving motivation,
we are interested in classes that may cause road ac-
cidents if undetected. Thus, we add animal classes
to obtain POC A and POC CS+A (both animal and
cityscapes classes). Similar to OOD detection, find-
ing a test set (i.e., Cityscapes images with animals) is
challenging. Inspired by Karazija et al. [27], we use
Pascal [15] animal classes to assess the synth2real
performance of POC-trained models. For complete-
ness, we also evaluate on Cityscapes extended with
POC.

T2I baseline. Karazija et al. [27] use text2image
diffusion models to cluster the features of a frozen
model for zero-shot segmentation. Although it is not
the same task (in our case we would not like to use
a frozen model but to train one from scratch), we
include two augmented datasets in our experiments:
T2I Full and T2I Crop where we take the Full (or
cropped) image generated by a T2I model and stitch it

into Cityscapes images (we use the text2image model
from the same work used in our POC [48]). In Fig. 6
we show a comparison of the synthetic datasets. Using
T2I baselines often leads to unrealistic object size and
position. Moreover, perhaps due to the lack of con-
text, the T2I model often generates images misaligned
with our goal (e.g., a composition of many small dog
images). We obtain the segmentation labels with the
same open-vocabulary model as our POC pipeline,
which is more flexible than foreground/background
segmentation suggested in the original work [27].

Architectures. We perform experiments using three
different models: DLV3+ [7] with ResNet101 [21];
ConvNext, a recent convolutional architecture[39];
Segmenter [55], a recent transformer architecture.
We use the default training settings for each model.
Note our goal is not to compare the architectures, but
the extended datasets.

5.2. Results

POC performs better than T2I baselines. In Tab. 3
we show themIoU for eachmodel after training on our
different datasets, as well as two baselines trained
on Cityscapes and Pascal. In all architectures, we
find that training with POC datasets leads to better
results than their T2I counterparts on CS extended
and Pascal (animal), i.e., only animal classes of Pascal.
We argue this is due to a higher realism in gener-
ated images as observed in Fig. 6. Interestingly, POC
also improves performance on the original Cityscapes.
Perhaps extending classes acts as a form of regular-
ization.

Generalization is key to learn from synthetic data.
We observe that the performance of DLV3+ trained
on POC A when evaluated on Pascal (30.43) is much
lower than that of Segmenter (92.4), which achieves
an mIoU competitive with the baseline trained directly
on Pascal (94.75). In order to understand that, we
evaluate the performance of such models on the Pas-
cal classes also present on Cityscapes (i.e., car, mo-
torcycle, bike, person, train and bus). This shows
that DLV3+ has much less generalization capability
independently of the synthetic classes (i.e., DLV3+
trained on Cityscapes has a much lower mIoU than
Segmenter). One could argue that perhaps the low
performance of DLV3+ on Pascal is due to the large
domain shift, however, in Fig. 7 we show qualitative
results on web images of driving scenes, closer to the
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CS CS ext. Pascal PascalModel Train set (19 cl.) (19 + 6 cl.) (animal) (citysc.)

Pascal (baseline) – – 80.57 85.81
CS (baseline) 79.09 – – 42.22
T2I Full 77.13 73.2 28.32 23.51
T2I Crop 78.23 81.49 26.15 25.09
POC A 79.98 84.09 30.43 35.83

DLV3+

POC CS+A 79.9 83.8 28.11 53.57
Pascal (baseline) – – 94.43 93.92
CS (baseline) 81.57 – – 70.49
T2I Full 82.26 82.99 60.41 65.6
T2I Crop 82.43 86.04 61.09 67.55
POC A 82.94 86.68 65.46 70.87

CNXT

POC CS+A 82.54 86.09 69.75 82.43
Pascal (baseline) – – 94.75 91.43
CS (baseline) 76.19 – – 79.87
T2I Full 77.19 79.46 81.96 74.32
T2I Crop 77.62 81.27 75.95 75.44
POC A 78.48 82.28 92.4 79.1

Segm.

POC CS+A 78.39 81.92 93.14 89.55
GSAM Open Vocab. 42.0 41.06 75.13 76.08

Table 3: mIoU evaluation. We train three architectures
on Pascal and Cityscapes (as baselines) and compare two
Text2Image (T2I) generation methods with our POC. We
also add the open vocabulary model used in POC for com-
pleteness.

Cityscapes domain, and still observe that DLV3+ is
notably worse than the other methods.

We hypothesize that, in order to learn transferable
features from synthetic data, the generalization capa-
bility of the model plays a key role. Indeed, although
generative models have improved the realism of gen-
erated content remarkably, there is still a synth2real
gap. Thus, more robust models (i.e., with strong trans-
ferability of learned features) may be able to extract
more useful features rather than overfitting to brit-
tle patterns in generated data. Pre-training might
also play a role: DLV3+ backbone was pretrained
on Imagenet-1k, while ConvNeXt and Segmenter on
Imagenet-21k. Nevertheless, we also observe a gap
between ConvNeXt and Segmenter, both in the gen-
eralization from CS to Pascal (CS classes) and in Pas-
cal (animals) when trained on POC A. Perhaps self-
attention or image tokenization play a role, but this
would require a more in-depth analysis. Yet, under-
standing the generalization gap between such models
is out of the scope of this work.

POC to augment existing classes. Given the com-
petitive performance of Segmenter with POC A on
Pascal (animals) compared to Pascal (CS classes), we

POC Pipeline T2I Full T2I Crop
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Figure 7: Qualitative results. We present results on web
images that have a milder domain shift compared to Pascal
dataset. We observe less notable differences between CNXT
and Segmenter but DLV3+ is still significantly worse. More
results in Appendix J.

are compelled to also inpaint Cityscapes classes with
POC, obtaining POC CS+A. We observe remarkable
improvements in Pascal (CS classes) in all three net-
works, significantly outperforming the baseline that
was only trained on Cityscapes. Coupled with the
milder but consistent improvement on the original
Cityscapes, this indicates that our pipeline could also
be helpful in improving generalization.

Open vocabulary baseline. Considering that we
use a single open-vocabulary segmentation method
(GSAM [18]) to label all objects inserted with POC,
we also evaluate its performance on this task as a
baseline. Although its performance on Pascal is rea-
sonable, it significantly underperforms on Cityscapes.
We hypothesize this may be due to the one-vs-all na-
ture of open-vocabulary predictors (where each class
is predicted individually with a prompt) that does not
perform well on complex images with many classes.
Interestingly, the Segmenter model trained with POC
significantly outperforms GSAM on Pascal. We find
this remarkable as we could interpret it as knowledge
distillation from a teacher model (GSAM) while signif-
icantly improving its performance. On the other hand,
note that the setting is very different when we use
GSAM in the POC pipeline, as we know which object
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is inpainted. We also observe a strong improvement
when labelling only the cropped region 𝑥𝑟 instead of
the full image 𝑥.

6. Concluding remarks
To accurately assess anomaly segmentation capabili-
ties of models deployed in open-world settings, we ar-
gue that datasets should be realistic and carry a small
domain shift w.r.t. the training distribution, as we
show it can hinder OOD detection. Towards this goal,
we introduce the Placing Object in Context (POC)
pipeline, that allows adding any (OOD) object into
any image based on simple prompting. POC uses dif-
fusion models and open-vocabulary segmentation to
achieve high realism and versatility.

We showcase POC’s flexibility by generating three
anomaly segmentation test sets: POC-CS, POC-IDD
and POC-ACDC. Moreover, we observe that generat-
ing data for OOD fine-tuning with POC brings signifi-
cant improvements in standard anomaly segmenta-
tion benchmarks.

Beyond anomaly segmentation, we use POC-
generated datasets to learn new classes without any
real example. Interestingly, we observe that the com-
bination of more realistic synthetic data with recent
segmentation models with strong generalization ca-
pabilities can lead to remarkable performances, com-
petitive with training on real data.

In future work, we hope to better understand how
to select the optimal list of anomalies for fine-tuning
and how can modern architectures make the best
use of synthetic data to learn new classes, also in a
continual learning setup.
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A. POC datasets object list
Our POC evaluation sets (i.e., POC-CS, POC-IDD and POC-ACDC) are obtained by adding objects to different
self-driving datasets. Following works like Lost and Found [45], we compiled a list of 25 objects that can be
found on the road.

The anomaly list is as follows: “stroller”, “trolley”, “garbage bag”, “wheelie bin”, “suitcase”, “skateboard”,
“chair dumped on the street”, “sofa dumped on the street”, “furniture dumped on the street”, “matress dumped
on the street”, “garbage dumped on the street”, “clothes dumped on the street”, “cement mixer on the street”,
“cat”, “dog”, “bird flying”, “horse”, “skunk”, “sheep”, “crocodile”, “alligator”, “bear”, “llama”, “tiger” and
“monkey”.

Additionally, we also add a few classes from Cityscapes to make sure that anomaly segmentation models are
indeed detecting anomalies and not merely identifying synthetic objects.

Cityscapes classes inluded are: “rider”, “bicycle”, “motorcycle”, “bus”, “person” and “car”.

B. Anomaly segmentation methods: mIoU on Cityscapes
Although fine-tuning methods with OOD samples can improve anomaly segmentation significantly, they may
affect the closed-set performance. In Tab. 4 we report the mIoU on Cityscapes of all methods reported in the
main paper, showing that fine-tuning with POC data does not negatively impact closed-set performance.

Method Mask2Anomaly RPL RbA
OOD data No ft. COCO POC coco POC alt. No ft. COCO POC coco POC alt. No ft. COCO POC coco POC alt.
mIoU ↑ 78.29 78.34 78.33 78.49 90.94 90.94 90.94 90.94 82.25 82.15 82.17 82.16

Table 4: mIoU on Cityscapes validation set. We compute themIoU after fine-tuning with different datasets (complementing
results in Tab. 2). We observe that fine-tuning with our POC datasets does not degrade the closed-set performance.

C. Adding objects with Instruct Pix2Pix

Add a cat on the road Add a dog on the road

Figure 8: Sample images from InstructPix2Pix [4]. We observe that InstructPix2Pix has a bias to replace
certain objects or features in the scene. In top images it replaces the mercedes logo of the ego vehicle while in
bottom images it replaces the edge of the sidewalk.

When building our pipeline, we explored different generative methods. In particular, InstructPix2Pix (IP2P)
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[4] has showed remarkable performance following natural language instructions (e.g., “turn the sofa red").
Therefore, it would be natural to have such “general-purpose editing" methods as baselines to add objects to the
images. We observed that IP2P seems to be biased towards modifying objects in the scene rather than adding
new ones. In Fig. 8 we show several examples of images generated with IP2P. In our initial experiments, we
observe how new objects tend to replace the logo of the ego vehicle (top images). If we remove the bottom of
the image (middle section), we then observe that some particular image features (e.g., the edge of the sidewalk)
tend to be replaced. Moreover, the added objects tend to lack realism and, given that the changes are not
constrained to a particular region, editing via IP2P usually results in undesired modifications in other image
regions.

D. Additional inpainting examples
In the main text we show examples where POC is applied to driving scenes, with the rationale that we want to
compare against prior anomaly segmentation datasets. Yet, to show the versatility of POC we also include here
a few examples of objects inpainted in completely different environments in Fig. 9.

Figure 9: POC examples: Images with inpainted objects using our POC pipeline. Left to right and top to
bottom, inserted objects are: “sea turtle”, “polar bear”, “white porcelain mug”, “rubber duck”, “person skiing”
and “inflatable flamingo”. In the same order, location prompts are: “the beach”, “snow”, “the table”, “ping
pong table”, “snow”, and “the beach”.

E. Ablation of guided region selection
We argued in the main text that in order to add objects into scenes realistically, it is important to properly
place them. Thus, we apply GSAM to segment a valid area based on a location prompt (e.g., “the road”) and
then select a region randomly within the valid area. Without this component in our pipeline, the objects result
inpainted in clearly unrealistic positions.

To assess the realism introduced by guiding the object location vs. placing objects randomly, we conducted a
human study where participants were shown different pairs of images, one with guided location inpainting and
the other with random placement, and asked to choose the most realistic image in each pair. We observed that
39% of times the preference was unclear, 43% guided location was preferred and 18% random location was
preferred. Note that a large portion of Cityscapes images is road/street, thus, a significant portion of randomly
placed objects will be realistic. On the other hand, when the location is different, the generated objects also
vary (even if fixing the random seed), which adds some noise to the study. All in all, we do observe a clear
preference for guided location compared to random placement. In Fig. 10 we show some examples of image
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pairs with guided and random locations. Note how the added “dumped clothes” in the bottom right are both in
realistic locations while the other objects are placed unrealistically with the random location.

Guided location Guided locationRandom location Random location

Figure 10: Location ablation examples: Different examples of images inpainted with our guided location or
random location of objects. We observe how in many cases, random location leads to unrealistic scenes.

F. Ablation of image2image blending
Similar to our location ablation, we also study if applying an image2image (I2I) model after object inpainting
leads to better blending. In particular, we performed a human study where participants had to choose the
most realistic image between our blending ans I2I. In 71% of the cases I2I blending did not improve results
significantly, in 25% it introduced artifacts that significantly reduced realism and in only 4% participants
preferred I2I blending.

In particular, we noted that I2I blending adds slight artefacts that can degrade the realism of the image
significantly, these become especially noticeable in text or traffic signs where small variations can change the
semantics drastically. In Fig. 11 we present two examples of such images where artefacts are highlighted.

Without Image2Image With Image2Image With Image2ImageWithout Image2Image

Figure 11: Examples of object blending: On the left image pair, we observe the presence of articles in the text
of an old perfume shop which is legible on the right image but becomes illegible with I2I. On the right image
pair, one can observe differences on the traffic signs. For instance, the text “Hotel Austria" on the green sign on
the top (legible when zoomed on the left) becomes again illegible on the right image. Also, the white squared
sign with a depiction of a bike without I2I becomes uninterpretable after I2I.
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G. AUPRC plots
In Fig. 12 we visualize the AUPRC results for all methods, complementing the visualization in Fig. 1.

Figure 12: AUPRC on different anomaly segmentation datasets. We compare three different anomaly
segmentation methods, M2A[46], RPL[38] and RbA[42] with different fine-tuning datasets. Fine-tuning with
POC-generated images tends to bring improvements or match COCO fine-tuning in most settings.
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H. Additional Pascal training samples
In Fig. 13 we show additional samples generated with our POC pipeline as well as T2I baselines (that use
text-to-image models inspired by [27]).

POC Pipeline T2I Full T2I Crop

Figure 13: Training image samples. Additional training images to learn new classes, complementing Fig. 6.
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I. Additional anomaly score maps
In this appendix section we add more visualizations of anomaly score maps with different methods. We show
results from our three POC-generated datasets as well as samples from previous anomaly datasets.
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Image Labels No fine-tuning COCO fine-tuning POC fine-tuning

Figure 14: M2A anomaly scores on CS-POC samples.
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Image Labels No fine-tuning COCO fine-tuning POC fine-tuning

Figure 15: M2A anomaly scores on IDD-POC samples.
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Image Labels No fine-tuning COCO fine-tuning POC fine-tuning

Figure 16: M2A anomaly scores on ACDC-POC samples.
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Image Labels No fine-tuning COCO fine-tuning POC fine-tuning

Figure 17: M2A anomaly scores on samples from related datasets (see Fig. 2).
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Image Labels No fine-tuning COCO fine-tuning POC fine-tuning

Figure 18: RPL anomaly scores on CS-POC samples.
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Image Labels No fine-tuning COCO fine-tuning POC fine-tuning

Figure 19: RPL anomaly scores on IDD-POC samples.
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Image Labels No fine-tuning COCO fine-tuning POC fine-tuning

Figure 20: RPL anomaly scores on ACDC-POC samples.
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Image Labels No fine-tuning COCO fine-tuning POC fine-tuning

Figure 21: RPL anomaly scores on samples from related datasets (see Fig. 2).
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Image Labels No fine-tuning COCO fine-tuning POC fine-tuning

Figure 22: RbA anomaly scores on CS-POC samples.
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Image Labels No fine-tuning COCO fine-tuning POC fine-tuning

Figure 23: RbA anomaly scores on IDD-POC samples.
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Image Labels No fine-tuning COCO fine-tuning POC fine-tuning

Figure 24: RbA anomaly scores on ACDC-POC samples.
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Image Labels No fine-tuning COCO fine-tuning POC fine-tuning

Figure 25: RbA anomaly scores on samples from related datasets (see Fig. 2).
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J. Additional qualitative results
In this section we show additional qualitative results for the dataset extension experiments (c.f. Sec. 5). We
show predictions on all evaluated datasets for DLV3+, ConvNeXt and Segmenter models.
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POC Pipeline T2I Full T2I Crop

Figure 26: DLV3+ predictions on additional web images.
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POC Pipeline T2I Full T2I Crop

Figure 27: ConvNeXt predictions on additional web images.
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POC Pipeline T2I Full T2I Crop

Figure 28: Segmenter predictions on additional web images.
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POC Pipeline T2I Full T2I Crop Labels

Ci
ty

sc
ap

es
 e

xt
en

de
d

Pa
sc

al
 te

st
 se

t

Figure 29: DLV3+ predictions on extended Cityscapes (POC A) and Pascal validation sets.
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POC Pipeline T2I Full T2I Crop Labels
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Figure 30: ConvNeXt predictions on extended Cityscapes (POC A) and Pascal validation sets.
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POC Pipeline T2I Full T2I Crop Labels
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Figure 31: Segmenter predictions on extended Cityscapes (POC A) and Pascal validation sets.
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