1,759 research outputs found

    The Grazing Value of Intermediate Wheatgrass in the Bitterroot Valley of Montana

    Get PDF
    Paper published as Bulletin 7 in the UM Bulletin Forestry Series.https://scholarworks.umt.edu/umforestrybulletin/1004/thumbnail.jp

    Creation of the first national linked colorectal cancer dataset in Scotland:prospects for future research and a reflection on lessons learned

    Get PDF
    Introduction: Current understanding of cancer patients, their treatment pathways and outcomes relies mainly on information from clinical trials and prospective research studies representing a selected sub-set of the patient population. Whole-population analysis is necessary if we are to assess the true impact of new interventions or policy in a real-world setting. Accurate measurement of geographic variation in healthcare use and outcomes also relies on population-level data. Routine access to such data offers efficiency in research resource allocation and a basis for policy that addresses inequalities in care provision. Objective: Acknowledging these benefits, the objective of this project was to create a population level dataset in Scotland of patients with a diagnosis of colorectal cancer (CRC). Methods: This paper describes the process of creating a novel, national dataset in Scotland. Results: In total, thirty two separate healthcare administrative datasets have been linked to provide a comprehensive resource to investigate the management pathways and outcomes for patients with CRC in Scotland, as well as the costs of providing CRC treatment. This is the first time that chemotherapy prescribing and national audit datasets have been linked with the Scottish Cancer Registry on a national scale. Conclusions: We describe how the acquired dataset can be used as a research resource and reflect on the data access challenges relating to its creation. Lessons learned from this process and the policy implications for future studies using administrative cancer data are highlighted

    Adjusting bone mass for differences in projected bone area and other confounding variables: an allometric perspective.

    Get PDF
    The traditional method of assessing bone mineral density (BMD; given by bone mineral content [BMC] divided by projected bone area [Ap], BMD = BMC/Ap) has come under strong criticism by various authors. Their criticism being that the projected bone "area" (Ap) will systematically underestimate the skeletal bone "volume" of taller subjects. To reduce the confounding effects of bone size, an alternative ratio has been proposed called bone mineral apparent density [BMAD = BMC/(Ap)3/2]. However, bone size is not the only confounding variable associated with BMC. Others include age, sex, body size, and maturation. To assess the dimensional relationship between BMC and projected bone area, independent of other confounding variables, we proposed and fitted a proportional allometric model to the BMC data of the L2-L4 vertebrae from a previously published study. The projected bone area exponents were greater than unity for both boys (1.43) and girls (1.02), but only the boy's fitted exponent was not different from that predicted by geometric similarity (1.5). Based on these exponents, it is not clear whether bone mass acquisition increases in proportion to the projected bone area (Ap) or an estimate of projected bone volume (Ap)3/2. However, by adopting the proposed methods, the analysis will automatically adjust BMC for differences in projected bone size and other confounding variables for the particular population being studied. Hence, the necessity to speculate as to the theoretical value of the exponent of Ap, although interesting, becomes redundant

    Fifty years of spellchecking

    Get PDF
    A short history of spellchecking from the late 1950s to the present day, describing its development through dictionary lookup, affix stripping, correction, confusion sets, and edit distance to the use of gigantic databases

    Thermal imaging is a non-invasive alternative to PET-CT for measurement of brown adipose tissue activity in humans

    Get PDF
    Background Obesity and its metabolic consequences are a major cause of morbidity and mortality. Brown adipose tissue (BAT) utilises glucose and free fatty acids to produce heat, thereby increasing energy expenditure. Effective evaluation of human BAT stimulators is constrained by current standard BAT assessment methods as positron emission tomography-computed tomography (PET-CT) requires exposure to high doses of ionising radiation. Infrared thermography (IRT) is a potential non-invasive, safe alternative, although direct corroboration with PET-CT has not previously been established. Methods IRT and 18F-fluorodeoxyglucose (¹⁸F-FDG) PET-CT data from 8 healthy male participants subjected to water jacket cooling were directly compared. Thermal images (TIs) were geometrically transformed to overlay PET-CT-derived maximum intensity projection (MIP) images from each subject and the areas of greatest intensity of temperature and glucose-uptake within the supraclavicular regions compared. Relationships between supraclavicular temperatures from IRT (TSCR) and the maximum rate of glucose uptake (MR(gluc)) from PET-CT were determined. Results Glucose uptake on MR(gluc)MIP was positively correlated with change in TSCR relative to a reference region (r² = 0.721; p=0.008). Spatial overlap between areas of maximal MR(gluc)MIP and maximal TSCR was 29.5±5.1%. Prolonged cooling to 60 minutes was associated with further TSCR rise compared with cooling to 10 minutes. Conclusions The supraclavicular hotspot identified on IRT closely corresponds to the area of maximal uptake on PET-CT-derived MR(gluc)MIP images. Greater increases in relative TSCR were associated with raised glucose uptake. IRT should now be considered a suitable method for measuring BAT activation, especially in populations where PET-CT is not feasible, practical or repeatable

    Considering Intra-individual Genetic Heterogeneity to Understand Biodiversity

    Get PDF
    In this chapter, I am concerned with the concept of Intra-individual Genetic Hetereogeneity (IGH) and its potential influence on biodiversity estimates. Definitions of biological individuality are often indirectly dependent on genetic sampling -and vice versa. Genetic sampling typically focuses on a particular locus or set of loci, found in the the mitochondrial, chloroplast or nuclear genome. If ecological function or evolutionary individuality can be defined on the level of multiple divergent genomes, as I shall argue is the case in IGH, our current genetic sampling strategies and analytic approaches may miss out on relevant biodiversity. Now that more and more examples of IGH are available, it is becoming possible to investigate the positive and negative effects of IGH on the functioning and evolution of multicellular individuals more systematically. I consider some examples and argue that studying diversity through the lens of IGH facilitates thinking not in terms of units, but in terms of interactions between biological entities. This, in turn, enables a fresh take on the ecological and evolutionary significance of biological diversity

    Caltech Faint Galaxy Redshift Survey. XI. The Merger Rate to Redshift 1 from Kinematic Pairs

    Get PDF
    The rate of mass accumulation due to galaxy merging depends on the mass, density, and velocity distribution of galaxies in the near neighborhood of a host galaxy. The fractional luminosity in kinematic pairs combines all of these effects in a single estimator that is relatively insensitive to population evolution. Here we use a k-corrected and evolution-compensated volume-limited sample having an R-band absolute magnitude of M^(k,e)_R ≤ -19.8 + 5 log h mag drawing about 300 redshifts from the Caltech Faint Galaxy Redshift Survey and 3000 from the Canadian Network for Observational Cosmology field galaxy survey to measure the rate and redshift evolution of merging. The combined sample has an approximately constant comoving number and luminosity density from redshift 0.1 to 1.1 (Ω_M = 0.2, Ω_Λ = 0.8); hence, any merger evolution will be dominated by correlation and velocity evolution, not density evolution. We identify kinematic pairs with projected separations less than either 50 or 100 h^(-1) kpc and rest-frame velocity differences of less than 1000 km s^(-1). The fractional luminosity in pairs is modeled as f_L(Δv, r_p, M^(k,e)_τ)(1 + z)^(m,L), where [f_L, m_L] are [0.14 ± 0.07, 0 ± 1.4] and [0.37 ± 0.7, 0.1 ± 0.5] for r_p ≤ 50 and 100 h^(-1) kpc, respectively (Ω_M = 0.2, Ω_Λ = 0.8). The value of mL is about 0.6 larger if Λ = 0. To convert these redshift-space statistics to a merger rate, we use the data to derive a conversion factor to a physical space pair density, a merger probability, and a mean in-spiral time. The resulting mass accretion rate per galaxy (M_1, M_2 ≥ 0.2M*) is 0.02 ± 0.01(1 + z)^(0.1±0.5)M* Gyr^(-1). Present-day high-luminosity galaxies therefore have accreted approximately 0.15M* of their mass over the approximately 7 Gyr to redshift 1. Since merging is likely only weakly dependent on the host mass, the fractional effect, δM/M 0.15M*/M, is dramatic for lower mass galaxies but is, on the average, effectively perturbative for galaxies above 1M*

    Comparison of Pittsburgh compound B and florbetapir in cross-sectional and longitudinal studies.

    Get PDF
    IntroductionQuantitative in vivo measurement of brain amyloid burden is important for both research and clinical purposes. However, the existence of multiple imaging tracers presents challenges to the interpretation of such measurements. This study presents a direct comparison of Pittsburgh compound B-based and florbetapir-based amyloid imaging in the same participants from two independent cohorts using a crossover design.MethodsPittsburgh compound B and florbetapir amyloid PET imaging data from three different cohorts were analyzed using previously established pipelines to obtain global amyloid burden measurements. These measurements were converted to the Centiloid scale to allow fair comparison between the two tracers. The mean and inter-individual variability of the two tracers were compared using multivariate linear models both cross-sectionally and longitudinally.ResultsGlobal amyloid burden measured using the two tracers were strongly correlated in both cohorts. However, higher variability was observed when florbetapir was used as the imaging tracer. The variability may be partially caused by white matter signal as partial volume correction reduces the variability and improves the correlations between the two tracers. Amyloid burden measured using both tracers was found to be in association with clinical and psychometric measurements. Longitudinal comparison of the two tracers was also performed in similar but separate cohorts whose baseline amyloid load was considered elevated (i.e., amyloid positive). No significant difference was detected in the average annualized rate of change measurements made with these two tracers.DiscussionAlthough the amyloid burden measurements were quite similar using these two tracers as expected, difference was observable even after conversion into the Centiloid scale. Further investigation is warranted to identify optimal strategies to harmonize amyloid imaging data acquired using different tracers
    corecore