46 research outputs found

    The use of Web Ontology Language (OWL) to Combine Extant Controlled Vocabularies in Biodiversity Informatics Appears Redundant

    Get PDF
    Implementation of PESI requires data to be combined from multiple source databases. Some of the shared fields in the source databases used different controlled vocabularies of terms. OWL DL was investigated as a mechanism to build an extensible, shared ontology of species occurrence terms that permitted the source database to continue using and extending their own vocabularies whilst formally mapping to a more generic shared vocabulary. The merits of this approach were explored and it was concluded that the building of such a complex mapping ontology probably wasn't worthwhile. The level of semantic complexity involved outweighed the costs of simply imposing a flat list of well defined terms onto data suppliers. The main problem with exiting vocabularies appear to be the overloading of terms. A candidate list of terms was proposed

    BDEEP vA4: The Conservative Government and the End of Empire, 1957-1964

    Get PDF
    The British Documents on the End of Empire Project (BDEEP) is an initiative of the Institute of Commonwealth Studies, School of Advanced Study, University of London. Established in 1987 under the auspices of the British Academy, the Project has since published 18 volumes containing an annotated selection of official documents from the UK National Archives, charting British withdrawal from its colonial territories. Electronic versions of these volumes have been made available with the support of The Stationary Office. Series A Volume 4 on 'The Conservative Government and the End of Empire, 1957-1964' was published in 2000 in two parts, edited by Ronald Hyam and Wm Roger Louis

    A standard data model representation for taxonomic information.

    Get PDF
    The names used by biologists to label the observations they make are imprecise. This is an issue as workers increasingly seek to exploit data gathered from multiple, unrelated sources on line. Even when the international codes of nomenclature are followed strictly the resultingnames (Taxon Names) do not uniquely identify the taxa (Taxon Concepts) that have been described by taxonomists but merely groups of type specimens. A standard data model for exchange of taxonomic information is described. It addresses this issue by facilitating explicit communication of information about Taxon Concepts and their associated names. A representation of this model as a XML Schema is introduced and the implications of the useof Globally Unique Identifiers discussed

    A botanical demonstration of the potential of linking data using unique identifiers for people

    Get PDF
    Natural history collection data available digitally on the web have so far only made limited use of the potential of semantic links among themselves and with cross-disciplinary resources. In a pilot study, botanical collections of the Consortium of European Taxonomic Facilities (CETAF) have therefore begun to semantically annotate their collection data, starting with data on people, and to link them via a central index system. As a result, it is now possible to query data on collectors across different collections and automatically link them to a variety of external resources. The system is being continuously developed and is already in production use in an international collection portal

    Reducing socio-economic inequalities in all-cause mortality: a counterfactual mediation approach.

    Get PDF
    Socio-economic inequalities in mortality are well established, yet the contribution of intermediate risk factors that may underlie these relationships remains unclear. We evaluated the role of multiple modifiable intermediate risk factors underlying socio-economic-associated mortality and quantified the potential impact of reducing early all-cause mortality by hypothetically altering socio-economic risk factors. Data were from seven cohort studies participating in the LIFEPATH Consortium (total n = 179 090). Using both socio-economic position (SEP) (based on occupation) and education, we estimated the natural direct effect on all-cause mortality and the natural indirect effect via the joint mediating role of smoking, alcohol intake, dietary patterns, physical activity, body mass index, hypertension, diabetes and coronary artery disease. Hazard ratios (HRs) were estimated, using counterfactual natural effect models under different hypothetical actions of either lower or higher SEP or education. Lower SEP and education were associated with an increase in all-cause mortality within an average follow-up time of 17.5 years. Mortality was reduced via modelled hypothetical actions of increasing SEP or education. Through higher education, the HR was 0.85 [95% confidence interval (CI) 0.84, 0.86] for women and 0.71 (95% CI 0.70, 0.74) for men, compared with lower education. In addition, 34% and 38% of the effect was jointly mediated for women and men, respectively. The benefits from altering SEP were slightly more modest. These observational findings support policies to reduce mortality both through improving socio-economic circumstances and increasing education, and by altering intermediaries, such as lifestyle behaviours and morbidities

    The Prometheus Taxonomic Model: a practical approach to representing multiple classification.

    Get PDF
    A model for representing taxonomic data in a flexible and dynamic system capable of handling and comparing multiple simultaneous classifications is presented. The Prometheus Taxonomic Model takes as its basis the idea that a taxon can be circumscribed by the specimens or taxa of a lower rank which are said to belong to it. In this model alternative taxon concepts are therefore represented in terms of differing circumscriptions. This provides a more objective way of expressing taxonomic concepts than purely descriptive circumscriptions have been published. Using specimens as the fundamental elements of taxon circumscription also allows for the automatic naming of taxa based upon the distribution and priority of types within each circumscription, and by application of the International Code of Botanical Nomenclature. This approach effectively separates the process of naming taxa (nomenclature) from that of classification, and therefore enables the system to store multiple classifications. The derivation of the model, how it compares with other models, and the implications for the construction of global data sets and taxonomic working practice are discussed

    International Image Interoperability Framework: A unified approach to sharing images of natural history specimens?

    No full text
    Researchers have become accustomed to online access to data about specimens held in natural history collections. Over several decades, metadata standards have been developed to facilitate the sharing and aggregation of this data, notably Darwin Core and ABCD (Access to Biological Collections Data) developed under the auspices of TDWG but other standards developed in other communities, have also proved useful notably EML (Ecological Metadata Language) and GML (Geography Markup Language).Data aggregators have arisen to both, drive standards development and take advantage of the vast number of records made available through this community effort. Examples include Atlas of Living Australia and spin off Atlas projects, EoL (Encyclopedia of Life), iDigBio, Global Biodiversity Information Facility (GBIF), WFO (World Flora Online).There are still many “dark specimens” that are not visible to the web and efforts continue to digitise metadata on these objects and make them available. The vast majority of the data that has been liberated so far, has therefore been text based and the standards reflect this, although many institutions and projects are also producing large numbers of images and other media.There have been media extensions to some standards to accommodate the sharing of images and other multimedia formats. However, these are restricted to metadata about media objects rather than the exchange of media objects themselves. For example, two extensions to Darwin Core are Audubon Core, which is designed to “determine whether a particular resource or collection will be fit for some particular biodiversity science application before acquiring the media.” and the Simple Multimedia extension, which is a “simple extension for exchanging metadata about multimedia resources”. Therefore image exchange, in particular, has not used open standards. Projects have relied on transferring high resolution versions of images (e.g. submission of type specimen images to JSTOR) or cut down compressed versions (e.g. many herbarium specimens submitted to GBIF or Europeana). The network has not allowed access to high resolution versions of images as curated by the host institutions themselves beyond basic links to web pages. If high resolution images have been published in online catalogues, they have been made available using a hotchpotch of different technologies including the now defunct Java Applets and Adobe Flash player. The network has not supported different views of the same specimen or annotations of those views, or integration of audio and moving images.In an ideal world a researcher should be able to view and annotate images of specimens held across multiple collections in a unified way, and the host institutions should have access to those annotations and statistics on how their specimens are being used. How can we achieve this?The sharing of multimedia representations of objects online is not a problem unique to the biodiversity community. Scholars in museums and archives of all kinds are facing the same issues. In 2011 the British Library, Stanford University, the Bodleian Libraries (Oxford University), the Bibliothèque nationale de France, Nasjonalbiblioteket (National Library of Norway), Los Alamos National Laboratory Research Library, and Cornell University came together to develop an exchange standard called IIIF (International Image Interoperability Framework). This framework now consists of six APIs (Application Programming Interface), four stable and two in beta, to publish and integrate image and other multimedia resources in a uniform manner and has been adopted by many institutions and commercial partners in the digital humanities. Applications based on IIIF enable many of the features desired by biodiversity researchers.The notion of sharing and annotating specimen images is not new to the natural history community. MorphBank, founded in 1998, has grown to allow much of this desirable functionality but at the cost and fragility of being a centralised database. The question we should perhaps be asking is: how can we make the biodiversity data sharing network as a whole more like MorphBank?From 2019 to 2021, part of the EU-funded Synthesys+ programme will support the adoption of IIIF as a unified way to publish images of natural history specimens. We aim to have a set of exemplar institutions publishing IIIF manifests for some millions of specimens by the end of the project and one or more demonstration applications in place. We hope this will act as a catalyst for wider adoption in the natural history community. A key goal is to integrate image data served using IIIF with metadata available via CETAF (Consortium of European Taxonomic Facilities) specimen identifiers. If IIIF were ubiquitous in the natural history community, building tools that implemented this functionality would be feasible.A brief demonstration of a herbarium specimen browser, Herbaria Mundi, will be given. It will illustrate how specimens hosted in different institutions can be manipulated in a single interface. The architecture that supports this behaviour will be explained and its challenges, by implementing the institutions discussed

    Automated Image Sampling and Classification Can Be Used to Explore Perceived Naturalness of Urban Spaces.

    No full text
    The psychological restorative effects of exposure to nature are well established and extend to just viewing of images of nature. A previous study has shown that Perceived Naturalness (PN) of images correlates with their restorative value. This study tests whether it is possible to detect degree of PN of images using an image classifier. It takes images that have been scored by humans for PN (including a subset that have been assessed for restorative value) and passes them through the Google Vision API image classification service. The resulting labels are assigned to broad semantic classes to create a Calculated Semantic Naturalness (CSN) metric for each image. It was found that CSN correlates with PN. CSN was then calculated for a geospatial sampling of Google Street View images across the city of Edinburgh. CSN was found to correlate with PN in this sample also indicating the technique may be useful in large scale studies. Because CSN correlates with PN which correlates with restorativeness it is suggested that CSN or a similar measure may be useful in automatically detecting restorative images and locations. In an exploratory aside CSN was not found to correlate with an indicator of socioeconomic deprivation
    corecore