2,235 research outputs found
Shared reading of children's interactive picture books
We report on a study of children and parents shared reading of interactive printed books. We investigated the differences between books with interactive features and books with expressive typography in order to evaluate which features within a book encouraged interaction between the reading participants and the book. 11 parent and child groups took part in the study that involved three observed reading sessions. From our observations we offer suggestions for the development of books and eBooks to encourage shared reading practices
Atomistic Molecular Dynamics Simulations of Mitochondrial DNA Polymerase gamma : Novel Mechanisms of Function and Pathogenesis
DNA polymerase gamma (Pol gamma) is a key component of the mitochondrial DNA replisome and an important cause of neurological diseases. Despite the availability of its crystal structures, the molecular mechanism of DNA replication, the switch between polymerase and exonuclease activities, the site of replisomal interactions, and functional effects of patient mutations that do not affect direct catalysis have remained elusive. Here we report the first atomistic classical molecular dynamics simulations of the human Pol gamma replicative complex. Our simulation data show that DNA binding triggers remarkable changes in the enzyme structure, including (1) completion of the DNA-binding channel via a dynamic subdomain, which in the apo form blocks the catalytic site, (2) stabilization of the structure through the distal accessory beta-subunit, and (3) formation of a putative transient replisome-binding platform in the "intrinsic processivity" subdomain of the enzyme. Our data indicate that noncatalytic mutations may disrupt replisomal interactions, thereby causing Pol gamma-associated neurodegenerative disorders.Peer reviewe
Long-chain GM1 gangliosides alter transmembrane domain registration through interdigitation
Extracellular and cytosolic leaflets in cellular membranes are distinctly different in lipid composition, yet they contribute together to signaling across the membranes. Here we consider a mechanism based on long-chain gangliosides for coupling the extracellular and cytosolic membrane leaflets together. Based on atomistic molecular dynamics simulations, we find that long-chain GM1 in the extracellular leaflet exhibits a strong tendency to protrude into the opposing bilayer leaflet. This interdigitation modulates the order in the cytosolic monolayer and thereby strengthens the interaction and coupling across a membrane. Coarse-grained simulations probing longer time scales in large membrane systems indicate that GM1 in the extracellular leaflet modulates the phase behavior in the cytosolic monolayer. While short-chain GM1 maintains phase-symmetric bilayers with a strong membrane registration effect, the situation is altered with long-chain GM1. Here, the significant interdigitation induced by long-chain GM1 modulates the behavior in the cytosolic GM1-free leaflet, weakening and slowing down the membrane registration process. The observed physical interaction mechanism provides a possible means to mediate or foster transmembrane communication associated with signal transduction. (C) 2017 Elsevier B.V. All rights reserved.Peer reviewe
Analysis of 3 years of data from the gravitational wave detectors EXPLORER and NAUTILUS
We performed a search for short gravitational wave bursts using about 3 years
of data of the resonant bar detectors Nautilus and Explorer. Two types of
analysis were performed: a search for coincidences with a low background of
accidentals (0.1 over the entire period), and the calculation of upper limits
on the rate of gravitational wave bursts. Here we give a detailed account of
the methodology and we report the results: a null search for coincident events
and an upper limit that improves over all previous limits from resonant
antennas, and is competitive, in the range h_rss ~1E-19, with limits from
interferometric detectors. Some new methodological features are introduced that
have proven successful in the upper limits evaluation.Comment: 12 pages, 12 figure
Investigating Interactions of Biomembranes and Alcohols: A Multiscale Approach
We study the interaction of lipid bilayers with short chain alcohols using
molecular dynamics on different length scales. We use detailed atomistic
modeling and modeling on the length scale where an alcohol is just an
amphiphilic dimer. Our strategy is to calibrate a coarse--grained model against
the detailed model at selected state points at low alcohol concentration and
then perform a wider range of simulations using the coarse--grained model. We
get semiquantitative agreement with experiment for the major observables such
as order parameter and area per molecule. We find a linear increase of area per
molecule with alcohol concentration. The alcohol molecules in both system
descriptions are in close contact with the glycerol backbone. Butanol molecules
can enter the bilayer to some extent in contrast to the behavior of shorter
alcohols. At very high alcohol concentrations we find clearly increased
interdigitation between leaflets.Comment: 14 pages, 6 figure
Sub-microscopic analysis of t-tubule geometry in living cardiac ventricular myocytes using a shape-based analysis method
Transverse-axial tubules (TTs) are key structures involved in cardiac excitation-contraction coupling and can become deranged in disease. Although optical measurement of TTs is frequently employed to assess TT abundance and regularity, TT dimensions are generally below the diffraction limit of optical microscopy so determination of tubule size is problematic. TT diameter was measured by labeling both local surface membrane area and volume with fluorescent probes (FM4-64 and calcein, respectively), correcting image asymmetry by image processing and using the relationship between surface area and volume for a geometric primitive. This method shows that TTs have a mean (± SEM) diameter of 356 ± 18 nm in rabbit and 169 ± 15 nm in mouse (p < 0.001). Rabbit TT diameters were more variable than those of mouse (p < 0.01) and the smallest TT detected was 41 nm in mouse and the largest 695 nm in rabbit. These estimates are consistent with TT diameters derived from the more limited sampling of high-pressure frozen samples by electron tomography (which examines only a small fraction of the cell volume). Other measures of TT abundance and geometry (such as volume, membrane fractions and direction) were also derived. On the physiological time scale of E-C coupling (milliseconds), the average TT electrical space constant is ~ 175 μm in rabbit and ~ 120 μm in mouse and is ~ 50% of the steady-state space constant. This is sufficient to ensure reasonable electrical uniformity across normal cells. The image processing strategy and shape-based 3D approach to feature quantification is also generally applicable to other problems in quantification of sub-cellular anatomy
Stratification and monitoring of natalizumab-associated progressive multifocal leukoencephalopathy risk: recommendations from an expert group
The use of natalizumab for highly active relapsing-remitting multiple sclerosis (MS) is influenced by the occurrence of progressive multifocal leukoencephalopathy (PML). Through measurement of the anti-JCV antibody index, and in combination with the presence or absence of other known risk factors, it may be possible to stratify patients with MS according to their risk of developing PML during treatment with natalizumab and detect early suspected PML using MRI including a diffusion-weighted imaging sequence. This paper describes a practical consensus guideline for treating neurologists, based on current evidence, for the introduction into routine clinical practice of anti-JCV antibody index testing of immunosuppressant-naïve patients with MS, either currently being treated with, or initiating, natalizumab, based on their anti-JCV antibody status. Recommendations for the frequency and type of MRI screening in patients with varying index-associated PML risks are also discussed. This consensus paper presents a simple and pragmatic algorithm to support the introduction of anti-JCV antibody index testing and MRI monitoring into standard PML safety protocols, in order to allow some JCV positive patients who wish to begin or continue natalizumab treatment to be managed with a more individualised analysis of their PML risk
Glucocorticoid receptor alters isovolumetric contraction and restrains cardiac fibrosis
Corticosteroids directly affect the heart and vasculature and are implicated in the pathogenesis of heart failure. Attention is focussed upon the role of the mineralocorticoid receptor (MR) in mediating pro-fibrotic and other adverse effects of corticosteroids upon the heart. In contrast, the role of the glucocorticoid receptor (GR) in the heart and vasculature is less well understood. We addressed this in mice with cardiomyocyte and vascular smooth muscle deletion of GR (SMGRKO mice). Survival of SMGRKO mice to weaning was reduced compared with that of littermate controls. Doppler measurements of blood flow across the mitral valve showed an elongated isovolumetric contraction time in surviving adult SMGRKO mice, indicating impairment of the initial left ventricular contractile phase. Although heart weight was elevated in both genders, only male SMGRKO mice showed evidence of pathological cardiomyocyte hypertrophy, associated with increased myosin heavy chain-β expression. Left ventricular fibrosis, evident in both genders, was associated with elevated levels of mRNA encoding MR as well as proteins involved in cardiac remodelling and fibrosis. However, MR antagonism with spironolactone from birth only modestly attenuated the increase in pro-fibrotic gene expression in SMGRKO mice, suggesting that elevated MR signalling is not the primary driver of cardiac fibrosis in SMGRKO mice, and cardiac fibrosis can be dissociated from MR activation. Thus, GR contributes to systolic function and restrains normal cardiac growth, the latter through gender-specific mechanisms. Our findings suggest the GR:MR balance is critical in corticosteroid signalling in specific cardiac cell types
Hydrogen Bond Dynamics Near A Micellar Surface: Origin of the Universal Slow Relaxation at Complex Aqueous Interfaces
The dynamics of hydrogen bonds among water molecules themselves and with the
polar head groups (PHG) at a micellar surface have been investigated by long
molecular dynamics simulations. The lifetime of the hydrogen bond between a PHG
and a water molecule is found to be much longer than that between any two water
molecules, and is likely to be a general feature of hydrophilic surfaces of
organized assemblies. Analyses of individual water trajectories suggest that
water molecules can remain bound to the micellar surface for more than a
hundred picosecond. The activation energy for such a transition from the bound
to a free state for the water molecules is estimated to be about 3.5kcal/mole.Comment: 12 pages. Phys. Rev. Lett. (Accepted) (2002
- …
