665 research outputs found

    A computational model for geomagnetically trapped particle shells and kinematic parameters Technical report, Oct. 1965 - Jun. 1966

    Get PDF
    Computer program to calculate geomagnetically trapped particle shell model, drift rate, and bounce path

    Synthesis of Multi-Radial Line Antenna for HIPERLAN

    Get PDF
    This paper is a postprint of a paper submitted to and accepted for publication in journal Electronics Letters and is subject to Institution of Engineering and Technology Copyright. The copy of record is available at IET Digital Library"[Abstract] We present a new antenna concept - the multi-radial travelling wave line antenna - that achieves a broadband conical radiation pattern suitable for use in multiple C-band wireless computer networks

    New Toroidal Beam Antennas for WLAN Communications

    Get PDF
    [Abstract] The design of a number of new antennas that radiate linearly polarized toroidal beams is described. The developed procedures are based on the use of a method of moments commercial software tool. Several numerical examples, working at WLAN communication frequencies, are derived and analyzed. Two experimental prototypes validate the numerical result

    Perturbation of the Phases of Taylor Field Samples in the Synthesis of Linear and Circular Array Antennas

    Get PDF
    [Abstract] Antenna design specifications do not usually restrict the phase of the radiated field. Antenna synthesis techniques generally exploit this freedom only indirectly, but direct phase perturbation can be fruitful

    Prompt energization of relativistic and highly relativistic electrons during a substorm interval: Van Allen Probes observations

    Get PDF
    Abstract On 17 March 2013, a large magnetic storm significantly depleted the multi-MeV radiation belt. We present multi-instrument observations from the Van Allen Probes spacecraft Radiation Belt Storm Probe A and Radiation Belt Storm Probe B at ~6 Re in the midnight sector magnetosphere and from ground-based ionospheric sensors during a substorm dipolarization followed by rapid reenergization of multi-MeV electrons. A 50% increase in magnetic field magnitude occurred simultaneously with dramatic increases in 100 keV electron fluxes and a 100 times increase in VLF wave intensity. The 100 keV electrons and intense VLF waves provide a seed population and energy source for subsequent radiation belt enhancements. Highly relativistic (\u3e2 MeV) electron fluxes increased immediately at L* ~ 4.5 and 4.5 MeV flux increased \u3e90 times at L* = 4 over 5 h. Although plasmasphere expansion brings the enhanced radiation belt multi-MeV fluxes inside the plasmasphere several hours postsubstorm, we localize their prompt reenergization during the event to regions outside the plasmasphere. Key Points Substorm dynamics are important for highly relativistic electron energization Cold plasma preconditioning is significant for rapid relativistic energization Relativistic / highly relativistic electron energization can occur in \u3c 5 hrs

    Gradual diffusion and punctuated phase space density enhancements of highly relativistic electrons: Van Allen Probes observations

    Get PDF
    Abstract The dual-spacecraft Van Allen Probes mission has provided a new window into mega electron volt (MeV) particle dynamics in the Earth\u27s radiation belts. Observations (up to E ~10 MeV) show clearly the behavior of the outer electron radiation belt at different timescales: months-long periods of gradual inward radial diffusive transport and weak loss being punctuated by dramatic flux changes driven by strong solar wind transient events. We present analysis of multi-MeV electron flux and phase space density (PSD) changes during March 2013 in the context of the first year of Van Allen Probes operation. This March period demonstrates the classic signatures both of inward radial diffusive energization and abrupt localized acceleration deep within the outer Van Allen zone (L ~4.0 ± 0.5). This reveals graphically that both competing mechanisms of multi-MeV electron energization are at play in the radiation belts, often acting almost concurrently or at least in rapid succession. Key Points Clear observations to higher energy than ever before Precise detection of where and how acceleration takes place Provides new eyes on megaelectron Volt

    Event-specific chorus wave and electron seed population models in DREAM3D using the Van Allen Probes

    Get PDF
    Abstract The DREAM3D diffusion model is applied to Van Allen Probes observations of the fast dropout and strong enhancement of MeV electrons during the October 2012 double-dip storm. We show that in order to explain the very different behavior in the two dips, diffusion in all three dimensions (energy, pitch angle, and Lo) coupled with data-driven, event-specific inputs, and boundary conditions is required. Specifically, we find that outward radial diffusion to the solar wind-driven magnetopause, an event-specific chorus wave model, and a dynamic lower-energy seed population are critical for modeling the dynamics. In contrast, models that include only a subset of processes, use statistical wave amplitudes, or rely on inward radial diffusion of a seed population, perform poorly. The results illustrate the utility of the high resolution, comprehensive set of Van Allen Probes\u27 measurements in studying the balance between source and loss in the radiation belt, a principal goal of the mission. Key Points DREAM3D uses event-specific driving conditions measured by Van Allen Probes Electron dropout is due to outward radial diffusion to compressed magnetopause Event-specific chorus and seed electrons are necessary for the enhancement

    Modelling the similarity of pitch collections with expectation tensors

    Get PDF
    Models of the perceived distance between pairs of pitch collections are a core component of broader models of music cognition. Numerous distance measures have been proposed, including voice-leading [1], psychoacoustic [2–4], and pitch and interval class distances [5]; but, so far, there has been no attempt to bind these different measures into a single mathematical or conceptual framework, nor to incorporate the uncertain or probabilistic nature of pitch perception. This paper embeds pitch collections in expectation tensors and shows how metrics between such tensors can model their perceived dissimilarity. Expectation tensors indicate the expected number of tones, ordered pairs of tones, ordered triples of tones, etc., that are heard as having any given pitch, dyad of pitches, triad of pitches, etc.. The pitches can be either absolute or relative (in which case the tensors are invariant with respect to transposition). Examples are given to show how the metrics accord with musical intuition
    • …
    corecore